Aspects of iterated forcing

Jörg Brendle

Kobe University

January/February 2010

Jörg Brendle Aspects of iterated forcing

<ロ> <同> <同> < 同> < 同>

Suslin ccc forcing Iteration of definable forcing Applications

1 Lecture 1: Definability

Suslin ccc forcing

- Iteration of definable forcing
- Applications
- 2 Lecture 2: Matrices
 - Extending ultrafilters
 - Matrix iterations
 - Applications
- 3 Lecture 3: Ultrapowers
 - Ultrapowers of p.o.'s
 - Ultrapowers and iterations
 - Applications
- 4 Lecture 4: Witnesses
 - The problem
 - The construction

< 17 ▶

→ Ξ → < Ξ</p>

Suslin ccc forcing Iteration of definable forcing Applications

Suslin ccc forcing

A p.o. \mathbb{P} is called a Suslin ccc forcing notion if it is ccc and

$$\begin{split} \mathbb{P} &\subseteq \omega^{\omega}, \\ \leq_{\mathbb{P}} \subseteq \omega^{\omega} \times \omega^{\omega}, \text{ and} \\ \bot_{\mathbb{P}} \subseteq \omega^{\omega} \times \omega^{\omega} \end{split}$$

are all analytic sets.

イロト イポト イヨト イヨト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

Suslin ccc forcing

A p.o. \mathbb{P} is called a Suslin ccc forcing notion if it is ccc and

$$\begin{split} \mathbb{P} &\subseteq \omega^{\omega}, \\ \leq_{\mathbb{P}} \subseteq \omega^{\omega} \times \omega^{\omega}, \text{ and} \\ \bot_{\mathbb{P}} \subseteq \omega^{\omega} \times \omega^{\omega} \end{split}$$

are all analytic sets.

Assume $M \models ZFC$. If the parameters in the definition of \mathbb{P} , $\leq_{\mathbb{P}}$, and $\perp_{\mathbb{P}}$ are in M, we may interpret \mathbb{P} in M. Denote this interpretation by \mathbb{P}^M .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Suslin ccc forcing Iteration of definable forcing Applications

Suslin ccc forcing

A p.o. $\mathbb P$ is called a Suslin ccc forcing notion if it is ccc and

$$\begin{split} \mathbb{P} &\subseteq \omega^{\omega}, \\ \leq_{\mathbb{P}} \subseteq \omega^{\omega} \times \omega^{\omega}, \text{ and} \\ \bot_{\mathbb{P}} \subseteq \omega^{\omega} \times \omega^{\omega} \end{split}$$

are all analytic sets.

Assume $M \models ZFC$. If the parameters in the definition of \mathbb{P} , $\leq_{\mathbb{P}}$, and $\perp_{\mathbb{P}}$ are in M, we may interpret \mathbb{P} in M. Denote this interpretation by \mathbb{P}^M .

Assume $M \subseteq N$. By Σ_1^1 absoluteness, the statements $p \in \mathbb{P}$, $q \leq_{\mathbb{P}} p$ and $p \perp_{\mathbb{P}} q$ are absolute between M and N.

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 1

Hechler forcing \mathbb{D} :

- Conditions: pairs (s, f) with $f \in \omega^{\omega}$ and $s \subseteq f$ finite
- Order: $(t,g) \leq (s,f)$ if $t \supseteq s$ and $g \geq f$ (everywhere)

イロト イポト イヨト イヨト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 1

Hechler forcing \mathbb{D} :

- Conditions: pairs (s, f) with $f \in \omega^{\omega}$ and $s \subseteq f$ finite
- Order: $(t,g) \leq (s,f)$ if $t \supseteq s$ and $g \geq f$ (everywhere)

Properties:

• σ -centered (thus ccc)

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 1

Hechler forcing \mathbb{D} :

- Conditions: pairs (s, f) with $f \in \omega^{\omega}$ and $s \subseteq f$ finite
- Order: $(t,g) \leq (s,f)$ if $t \supseteq s$ and $g \geq f$ (everywhere)

Properties:

- σ -centered (thus ccc)
- adds a generic Hechler real

$$d = \bigcup \{s : \text{ there is } f \in \omega^{\omega} \text{ such that } (s, f) \in G \}$$

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 1

Hechler forcing \mathbb{D} :

- Conditions: pairs (s, f) with $f \in \omega^{\omega}$ and $s \subseteq f$ finite
- Order: $(t,g) \leq (s,f)$ if $t \supseteq s$ and $g \geq f$ (everywhere)

Properties:

- σ -centered (thus ccc)
- adds a generic Hechler real

 $d = \bigcup \{s: ext{ there is } f \in \omega^\omega ext{ such that } (s, f) \in G \}$

• d is a dominating real, i.e. $f \leq^* d$ for every $f \in \omega^{\omega}$ from the ground model.

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 2

Check \mathbb{D} is Suslin ccc: identify \mathbb{D} with $\omega \times \omega^{\omega} \cong \omega^{\omega}$ via $(s, f) \mapsto (|s|, f)$. Then:

イロト イポト イヨト イヨト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 2

Check \mathbb{D} is Suslin ccc: identify \mathbb{D} with $\omega \times \omega^{\omega} \cong \omega^{\omega}$ via $(s, f) \mapsto (|s|, f)$. Then:

• the order is a closed relation

イロト イポト イヨト イヨト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 2

Check \mathbb{D} is Suslin ccc: identify \mathbb{D} with $\omega \times \omega^{\omega} \cong \omega^{\omega}$ via $(s, f) \mapsto (|s|, f)$. Then:

- the order is a closed relation
- (s, f) and (t, g) are incompatible iff

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 2

Check \mathbb{D} is Suslin ccc: identify \mathbb{D} with $\omega \times \omega^{\omega} \cong \omega^{\omega}$ via $(s, f) \mapsto (|s|, f)$. Then:

- the order is a closed relation
- (s, f) and (t, g) are incompatible iff
 - either s and t are incomparable (a clopen relation)

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 2

Check \mathbb{D} is Suslin ccc: identify \mathbb{D} with $\omega \times \omega^{\omega} \cong \omega^{\omega}$ via $(s, f) \mapsto (|s|, f)$. Then:

- the order is a closed relation
- (s, f) and (t, g) are incompatible iff
 - either s and t are incomparable (a clopen relation)
 - or one extends the other, say $s \subseteq t$ for simplicity, and t(n) < f(n) for some n (again a clopen relation).

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 3

Amoeba forcing \mathbb{A} :

- Conditions: open sets $U \subseteq 2^{\omega}$ of measure less than $\frac{1}{2}$
- Order: $V \leq U$ iff $V \supseteq U$

イロト イポト イヨト イヨト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 3

Amoeba forcing \mathbb{A} :

- Conditions: open sets $U \subseteq 2^{\omega}$ of measure less than $\frac{1}{2}$
- Order: $V \leq U$ iff $V \supseteq U$

Properties:

• σ -linked (thus ccc)

イロト イポト イヨト イヨト

MQ (P

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 3

Amoeba forcing \mathbb{A} :

- Conditions: open sets $U \subseteq 2^{\omega}$ of measure less than $\frac{1}{2}$
- Order: $V \leq U$ iff $V \supseteq U$

Properties:

- σ -linked (thus ccc)
- adds an open subset a = ∪ G of 2^ω of measure ¹/₂ (an amoeba real)

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 3

Amoeba forcing \mathbb{A} :

- Conditions: open sets $U \subseteq 2^{\omega}$ of measure less than $\frac{1}{2}$
- Order: $V \leq U$ iff $V \supseteq U$

Properties:

- σ -linked (thus ccc)
- adds an open subset a = ∪ G of 2^ω of measure ¹/₂ (an amoeba real)
- makes union of ground model null sets a null set (because X ⊆ a + r for every ground model null X and every rational r)

Suslin ccc forcing Iteration of definable forcing Applications

Examples for Suslin ccc forcing 3

Amoeba forcing \mathbb{A} :

- Conditions: open sets $U \subseteq 2^{\omega}$ of measure less than $\frac{1}{2}$
- Order: $V \leq U$ iff $V \supseteq U$

Properties:

- σ -linked (thus ccc)
- adds an open subset a = ∪ G of 2^ω of measure ¹/₂ (an amoeba real)
- makes union of ground model null sets a null set (because X ⊆ a + r for every ground model null X and every rational r)

Coding open sets by reals we see that $\mathbb A$ is Suslin ccc.

Suslin ccc forcing Iteration of definable forcing Applications

Absoluteness 1

Lemma (absoluteness of maximal antichains)

Let $M \subseteq N$ be ZFC-models. Let $\mathbb{P} \in M$ be Suslin ccc. Then "A is a maximal antichain in \mathbb{P} " is a $\Sigma_1^1 \cup \Pi_1^1$ statement, and therefore absolute between M and N. If \mathbb{P} is a Borel set, being a maximal antichain is in fact Π_1^1 .

Suslin ccc forcing Iteration of definable forcing Applications

Absoluteness 1

Lemma (absoluteness of maximal antichains)

Let $M \subseteq N$ be ZFC-models. Let $\mathbb{P} \in M$ be Suslin ccc. Then "A is a maximal antichain in \mathbb{P} " is a $\Sigma_1^1 \cup \Pi_1^1$ statement, and therefore absolute between M and N. If \mathbb{P} is a Borel set, being a maximal antichain is in fact Π_1^1 .

<u>Proof:</u> ccc: antichains are countable and coded by reals.

<ロト <同ト < 国ト < 国ト

Suslin ccc forcing Iteration of definable forcing Applications

Absoluteness 1

Lemma (absoluteness of maximal antichains)

Let $M \subseteq N$ be ZFC-models. Let $\mathbb{P} \in M$ be Suslin ccc. Then "A is a maximal antichain in \mathbb{P} " is a $\Sigma_1^1 \cup \Pi_1^1$ statement, and therefore absolute between M and N. If \mathbb{P} is a Borel set, being a maximal antichain is in fact Π_1^1 .

<u>Proof:</u> ccc: antichains are countable and coded by reals. Let $A = \{x_n : n \in \omega\} \subseteq \mathbb{P}$. A is a maximal antichain iff

- $x_n \perp_{\mathbb{P}} x_m$ for all $n \neq m$ and,
- for all y, either $y \notin \mathbb{P}$ or there is n such that $y \not\perp_{\mathbb{P}} x_n$.

Suslin ccc forcing Iteration of definable forcing Applications

Absoluteness 1

Lemma (absoluteness of maximal antichains)

Let $M \subseteq N$ be ZFC-models. Let $\mathbb{P} \in M$ be Suslin ccc. Then "A is a maximal antichain in \mathbb{P} " is a $\Sigma_1^1 \cup \Pi_1^1$ statement, and therefore absolute between M and N. If \mathbb{P} is a Borel set, being a maximal antichain is in fact Π_1^1 .

<u>Proof:</u> ccc: antichains are countable and coded by reals. Let $A = \{x_n : n \in \omega\} \subseteq \mathbb{P}$. A is a maximal antichain iff

• $x_n \perp_{\mathbb{P}} x_m$ for all $n \neq m$ and,

• for all y, either $y \notin \mathbb{P}$ or there is n such that $y \not\perp_{\mathbb{P}} x_n$. The first part is Σ_1^1 , while the second is Π_1^1 . Thus Σ_1^1 absoluteness applies. \Box

Suslin ccc forcing Iteration of definable forcing Applications

Absoluteness 2

Corollary (downward absoluteness of genericity)

Let $M \subseteq N$ be ZFC-models. Let $\mathbb{P} \in M$ be Suslin ccc. If G is \mathbb{P}^N -generic over N, then $G \cap M$ is \mathbb{P}^M -generic over M.

Suslin ccc forcing Iteration of definable forcing Applications

Absoluteness 2

Corollary (downward absoluteness of genericity)

Let $M \subseteq N$ be ZFC-models. Let $\mathbb{P} \in M$ be Suslin ccc. If G is \mathbb{P}^N -generic over N, then $G \cap M$ is \mathbb{P}^M -generic over M.

<u>Proof:</u> Let $A \in M$ be a maximal antichain of \mathbb{P} in M. By previous lemma: A maximal antichain of \mathbb{P} in N. Hence $G \cap A \neq \emptyset$. \Box

<ロト <同ト < 国ト < 国ト

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability in iterations 1

Lemma (preservation of embeddability in iterations)

Let $\mathbb{P}_0 < \circ \mathbb{P}_1$ be p.o.'s. Let $\dot{\mathbb{Q}}_i$ be \mathbb{P}_i -names for p.o.'s such that $\mathbb{P}_1 \Vdash \dot{\mathbb{Q}}_0 \subseteq \dot{\mathbb{Q}}_1$ and all maximal antichains of $\dot{\mathbb{Q}}_0$ in $V^{\mathbb{P}_0}$ are maximal antichains of $\dot{\mathbb{Q}}_1$ in $V^{\mathbb{P}_1}$. Then $\mathbb{P}_0 \star \dot{\mathbb{Q}}_0 < \circ \mathbb{P}_1 \star \dot{\mathbb{Q}}_1$.

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability in iterations 1

Lemma (preservation of embeddability in iterations)

Let $\mathbb{P}_0 < \circ \mathbb{P}_1$ be p.o.'s. Let $\dot{\mathbb{Q}}_i$ be \mathbb{P}_i -names for p.o.'s such that $\mathbb{P}_1 \Vdash \dot{\mathbb{Q}}_0 \subseteq \dot{\mathbb{Q}}_1$ and all maximal antichains of $\dot{\mathbb{Q}}_0$ in $V^{\mathbb{P}_0}$ are maximal antichains of $\dot{\mathbb{Q}}_1$ in $V^{\mathbb{P}_1}$. Then $\mathbb{P}_0 \star \dot{\mathbb{Q}}_0 < \circ \mathbb{P}_1 \star \dot{\mathbb{Q}}_1$.

<u>Proof:</u> Let A be a maximal antichain in $\mathbb{P}_0 \star \dot{\mathbb{Q}}_0$. Need to show: A still maximal in $\mathbb{P}_1 \star \dot{\mathbb{Q}}_1$. Let $(p^0, \dot{q}^0) \in \mathbb{P}_1 \star \dot{\mathbb{Q}}_1$.

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability in iterations 1

Lemma (preservation of embeddability in iterations)

Let $\mathbb{P}_0 < \circ \mathbb{P}_1$ be p.o.'s. Let $\dot{\mathbb{Q}}_i$ be \mathbb{P}_i -names for p.o.'s such that $\mathbb{P}_1 \Vdash \dot{\mathbb{Q}}_0 \subseteq \dot{\mathbb{Q}}_1$ and all maximal antichains of $\dot{\mathbb{Q}}_0$ in $V^{\mathbb{P}_0}$ are maximal antichains of $\dot{\mathbb{Q}}_1$ in $V^{\mathbb{P}_1}$. Then $\mathbb{P}_0 \star \dot{\mathbb{Q}}_0 < \circ \mathbb{P}_1 \star \dot{\mathbb{Q}}_1$.

<u>Proof:</u> Let A be a maximal antichain in $\mathbb{P}_0 \star \mathbb{Q}_0$. Need to show: A still maximal in $\mathbb{P}_1 \star \dot{\mathbb{Q}}_1$. Let $(p^0, \dot{q}^0) \in \mathbb{P}_1 \star \dot{\mathbb{Q}}_1$. Fix \mathbb{P}_1 -generic filter G over V containing p^0 . By assumption, $G \cap \mathbb{P}_0$ is \mathbb{P}_0 -generic over V. In $V[G \cap \mathbb{P}_0]$, let

 $B = \{q \in \mathbb{Q}_0 : \exists (p, \dot{q}) \in A \text{ with } p \in G \text{ and } q = \dot{q}[G \cap \mathbb{P}_0]\}.$

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability in iterations 2

Check: *B* is a maximal antichain in \mathbb{Q}_0 in $V[G \cap \mathbb{P}_0]!$

Jörg Brendle Aspects of iterated forcing

イロト イポト イヨト イヨト

SQA

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability in iterations 2

Check: *B* is a maximal antichain in \mathbb{Q}_0 in $V[G \cap \mathbb{P}_0]!$ By assumption, *B* maximal in \mathbb{Q}_1 in V[G]. Hence there is $q \in B$ compatible with $\dot{q}^0[G]$. Let $(p, \dot{q}) \in A$ witness $q = \dot{q}[G \cap \mathbb{P}_0] \in B$.

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability in iterations 2

Check: *B* is a maximal antichain in \mathbb{Q}_0 in $V[G \cap \mathbb{P}_0]!$ By assumption, *B* maximal in \mathbb{Q}_1 in V[G]. Hence there is $q \in B$ compatible with $\dot{q}^0[G]$. Let $(p, \dot{q}) \in A$ witness $q = \dot{q}[G \cap \mathbb{P}_0] \in B$. There is $\bar{p} \in G$ forcing that \dot{q} and \dot{q}^0 are compatible, with common extension $\dot{\bar{q}}$. Wlog $\bar{p} \leq p, p^0$. Then $(\bar{p}, \dot{\bar{q}}) \leq (p, \dot{q}), (p^0, \dot{q}^0)$. \Box

<ロト <同ト < 三ト < 三ト

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability in iterations 2

Check: *B* is a maximal antichain in \mathbb{Q}_0 in $V[G \cap \mathbb{P}_0]!$ By assumption, *B* maximal in \mathbb{Q}_1 in V[G]. Hence there is $q \in B$ compatible with $\dot{q}^0[G]$. Let $(p, \dot{q}) \in A$ witness $q = \dot{q}[G \cap \mathbb{P}_0] \in B$. There is $\bar{p} \in G$ forcing that \dot{q} and \dot{q}^0 are compatible, with common extension $\dot{\bar{q}}$. Wlog $\bar{p} \leq p, p^0$. Then $(\bar{p}, \dot{\bar{q}}) \leq (p, \dot{q}), (p^0, \dot{q}^0)$. \Box

Corollary (embeddability of Suslin ccc forcing)

Let $\mathbb{P}_0 < \circ \mathbb{P}_1$ be p.o.'s. Assume \mathbb{Q} is a Suslin ccc forcing coded in $V^{\mathbb{P}_0}$. Then $\mathbb{P}_0 \star \dot{\mathbb{Q}}^{V^{\mathbb{P}_0}} < \circ \mathbb{P}_1 \star \dot{\mathbb{Q}}^{V^{\mathbb{P}_1}}$.

<ロト <同ト < 三ト < 三ト

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability in iterations 2

Check: *B* is a maximal antichain in \mathbb{Q}_0 in $V[G \cap \mathbb{P}_0]!$ By assumption, *B* maximal in \mathbb{Q}_1 in V[G]. Hence there is $q \in B$ compatible with $\dot{q}^0[G]$. Let $(p, \dot{q}) \in A$ witness $q = \dot{q}[G \cap \mathbb{P}_0] \in B$. There is $\bar{p} \in G$ forcing that \dot{q} and \dot{q}^0 are compatible, with common extension $\dot{\bar{q}}$. Wlog $\bar{p} \leq p, p^0$. Then $(\bar{p}, \dot{\bar{q}}) \leq (p, \dot{q}), (p^0, \dot{q}^0)$. \Box

Corollary (embeddability of Suslin ccc forcing)

Let $\mathbb{P}_0 < \circ \mathbb{P}_1$ be p.o.'s. Assume \mathbb{Q} is a Suslin ccc forcing coded in $V^{\mathbb{P}_0}$. Then $\mathbb{P}_0 \star \dot{\mathbb{Q}}^{V^{\mathbb{P}_0}} < \circ \mathbb{P}_1 \star \dot{\mathbb{Q}}^{V^{\mathbb{P}_1}}$.

<u>Proof:</u> Immediate by previous lemma and absoluteness of maximal antichains of Suslin ccc forcing. \Box

Suslin ccc forcing Iteration of definable forcing Applications

1 Lecture 1: Definability

Suslin ccc forcing

• Iteration of definable forcing

- Applications
- 2 Lecture 2: Matrices
 - Extending ultrafilters
 - Matrix iterations
 - Applications
- 3 Lecture 3: Ultrapowers
 - Ultrapowers of p.o.'s
 - Ultrapowers and iterations
 - Applications
- 4 Lecture 4: Witnesses
 - The problem
 - The construction

< 17 ▶

→ Ξ → < Ξ</p>

MQ (P

Suslin ccc forcing Iteration of definable forcing Applications

Finite support iteration

Let δ be an ordinal. Let \mathbb{Q}_{α} , $\alpha < \delta$, be Suslin ccc, all coded in V.

Jörg Brendle Aspects of iterated forcing

イロト イポト イヨト イヨト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

Finite support iteration

Let δ be an ordinal. Let \mathbb{Q}_{α} , $\alpha < \delta$, be Suslin ccc, all coded in V.

One can recursively define the finite support iteration (fsi) $(\mathbb{P}_{\alpha} : \alpha \leq \delta)$ with iterands \mathbb{Q}_{α} in the usual way, letting $\mathbb{P}_{\alpha+1}$ be the two-step iteration of \mathbb{P}_{α} and $\dot{\mathbb{Q}}_{\alpha}^{V^{\mathbb{P}_{\alpha}}}$ (the reinterpretation of \mathbb{Q}_{α} in the \mathbb{P}_{α} -generic extension).

<ロト <同ト < 国ト < 国ト

Suslin ccc forcing Iteration of definable forcing Applications

Finite support iteration

Let δ be an ordinal. Let \mathbb{Q}_{α} , $\alpha < \delta$, be Suslin ccc, all coded in V.

One can recursively define the finite support iteration (fsi) $(\mathbb{P}_{\alpha} : \alpha \leq \delta)$ with iterands \mathbb{Q}_{α} in the usual way, letting $\mathbb{P}_{\alpha+1}$ be the two-step iteration of \mathbb{P}_{α} and $\dot{\mathbb{Q}}_{\alpha}^{V^{\mathbb{P}_{\alpha}}}$ (the reinterpretation of \mathbb{Q}_{α} in the \mathbb{P}_{α} -generic extension).

We will also look at fragments of this iteration.

By the absoluteness properties described above, all these fragments will completely embed into the whole iteration in a canonical way.

Suslin ccc forcing Iteration of definable forcing Applications

Fragments of the iteration

Fix $X \subseteq \delta$. By recursion on $\alpha \leq \delta$, define the p.o. $\mathbb{P}_{X \cap \alpha}$:

•
$$\mathbb{P}_{X\cap 0} = \{1\}$$

Suslin ccc forcing Iteration of definable forcing Applications

Fragments of the iteration

Fix $X \subseteq \delta$. By recursion on $\alpha \leq \delta$, define the p.o. $\mathbb{P}_{X \cap \alpha}$:

•
$$\mathbb{P}_{X\cap 0} = \{1\}$$

• $\mathbb{P}_{X\cap(\alpha+1)} = \begin{cases} \mathbb{P}_{X\cap\alpha} & \text{if } \alpha \notin X \\ \mathbb{P}_{X\cap\alpha} \star \dot{\mathbb{Q}}_{\alpha}^{V^{\mathbb{P}_{X\cap\alpha}}} & \text{if } \alpha \in X \end{cases}$

Suslin ccc forcing Iteration of definable forcing Applications

Fragments of the iteration

Fix $X \subseteq \delta$. By recursion on $\alpha \leq \delta$, define the p.o. $\mathbb{P}_{X \cap \alpha}$:

•
$$\mathbb{P}_{X\cap 0} = \{1\}$$

• $\mathbb{P}_{X\cap(\alpha+1)} = \begin{cases} \mathbb{P}_{X\cap\alpha} & \text{if } \alpha \notin X \\ \mathbb{P}_{X\cap\alpha} \star \dot{\mathbb{Q}}_{\alpha}^{V^{\mathbb{P}_{X\cap\alpha}}} & \text{if } \alpha \in X \end{cases}$

• For limit γ , $\mathbb{P}_{X \cap \gamma} = \lim \operatorname{dir}_{\alpha < \gamma} \mathbb{P}_{X \cap \alpha}$

Suslin ccc forcing Iteration of definable forcing Applications

Fragments of the iteration

Fix $X \subseteq \delta$.

By recursion on $\alpha \leq \delta$, define the p.o. $\mathbb{P}_{X \cap \alpha}$:

•
$$\mathbb{P}_{X\cap 0} = \{1\}$$

• $\mathbb{P}_{X\cap(\alpha+1)} = \begin{cases} \mathbb{P}_{X\cap\alpha} & \text{if } \alpha \notin X \\ \mathbb{P}_{X\cap\alpha} \star \dot{\mathbb{Q}}_{\alpha}^{V^{\mathbb{P}_{X\cap\alpha}}} & \text{if } \alpha \in X \end{cases}$

• For limit γ , $\mathbb{P}_{X \cap \gamma} = \lim \operatorname{dir}_{\alpha < \gamma} \mathbb{P}_{X \cap \alpha}$

Clearly, for $X = \delta$ one obtains the standard fsi $(\mathbb{P}_{\alpha} : \alpha \leq \delta)$ mentioned above.

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability of fragments 1

Lemma (embeddability of fragments)

Assume $X \subseteq Y \subseteq \delta$. Then $\mathbb{P}_X < \circ \mathbb{P}_Y$.

イロト イポト イヨト イヨト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability of fragments 1

Lemma (embeddability of fragments)

Assume $X \subseteq Y \subseteq \delta$. Then $\mathbb{P}_X < \circ \mathbb{P}_Y$.

<u>Proof:</u> Prove by induction on $\alpha \leq \delta$ that $\mathbb{P}_{X \cap \alpha} < \circ \mathbb{P}_{Y \cap \alpha}$.

Basic step: trivial.

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability of fragments 1

Lemma (embeddability of fragments)

Assume $X \subseteq Y \subseteq \delta$. Then $\mathbb{P}_X < \circ \mathbb{P}_Y$.

<u>Proof</u>: Prove by induction on $\alpha \leq \delta$ that $\mathbb{P}_{X \cap \alpha} < \circ \mathbb{P}_{Y \cap \alpha}$.

Basic step: trivial.

Successor step: let $\beta = \alpha + 1$. If $\alpha \notin X$, $\mathbb{P}_{X \cap \beta} = \mathbb{P}_{X \cap \alpha} < \circ \mathbb{P}_{Y \cap \beta}$

by definition and induction hypothesis.

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability of fragments 2

So assume $\alpha \in X$. Recall:

Corollary (embeddability of Suslin ccc forcing)

Let $\mathbb{P}_0 < \circ \mathbb{P}_1$ be p.o.'s. Assume \mathbb{Q} is a Suslin ccc forcing coded in $V^{\mathbb{P}_0}$. Then $\mathbb{P}_0 \star \dot{\mathbb{Q}}^{V^{\mathbb{P}_0}} < \circ \mathbb{P}_1 \star \dot{\mathbb{Q}}^{V^{\mathbb{P}_1}}$.

By induction hypothesis and embeddability of Suslin ccc forcing,

$$\mathbb{P}_{\boldsymbol{X}\cap\beta} = \mathbb{P}_{\boldsymbol{X}\cap\alpha} \star \dot{\mathbb{Q}}_{\alpha}^{\boldsymbol{V}^{\mathbb{P}_{\boldsymbol{X}\cap\alpha}}} < \circ \mathbb{P}_{\boldsymbol{Y}\cap\alpha} \star \dot{\mathbb{Q}}_{\alpha}^{\boldsymbol{V}^{\mathbb{P}_{\boldsymbol{Y}\cap\alpha}}} = \mathbb{P}_{\boldsymbol{Y}\cap\beta}$$

Suslin ccc forcing Iteration of definable forcing Applications

Embeddability of fragments 2

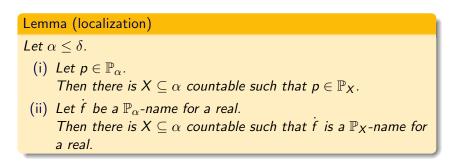
So assume $\alpha \in X$. By induction hypothesis and embeddability of Suslin ccc forcing,

$$\mathbb{P}_{\boldsymbol{X}\cap\beta} = \mathbb{P}_{\boldsymbol{X}\cap\alpha} \star \dot{\mathbb{Q}}_{\alpha}^{\boldsymbol{V}^{\mathbb{P}_{\boldsymbol{X}\cap\alpha}}} < \circ \mathbb{P}_{\boldsymbol{Y}\cap\alpha} \star \dot{\mathbb{Q}}_{\alpha}^{\boldsymbol{V}^{\mathbb{P}_{\boldsymbol{Y}\cap\alpha}}} = \mathbb{P}_{\boldsymbol{Y}\cap\beta}$$

Limit step: exercise!

Suslin ccc forcing Iteration of definable forcing Applications

Localization 1



Suslin ccc forcing Iteration of definable forcing Applications

Localization 1

Lemma (localization)
Let $\alpha \leq \delta$.
(i) Let ${m p}\in \mathbb{P}_{lpha}.$
Then there is $X\subseteq lpha$ countable such that $p\in \mathbb{P}_X.$
(ii) Let f be a \mathbb{P}_{lpha} -name for a real.
Then there is $X \subseteq \alpha$ countable such that f is a \mathbb{P}_X -name for
a real.

<u>Proof:</u> Simultaneous induction on $\alpha \leq \delta$.

Basic step: trivial.

イロト イポト イヨト イヨト

1

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

Localization 2

Successor step: let $\beta = \alpha + 1$. (i) Let $(p, \dot{q}) \in \mathbb{P}_{\alpha} \star \dot{\mathbb{Q}}_{\alpha} = \mathbb{P}_{\beta}$. By induction hypothesis for (i) and (ii): there are countable X_0 and X_1 such that $p \in \mathbb{P}_{X_0}$ and \dot{q} is a \mathbb{P}_{X_1} -name. Let $X = X_0 \cup X_1 \cup \{\alpha\}$. Then $(p, \dot{q}) \in \mathbb{P}_X$.

<ロト <同ト < 三ト < 三ト

Suslin ccc forcing Iteration of definable forcing Applications

Localization 2

Successor step: let $\beta = \alpha + 1$. (i) Let $(p, \dot{q}) \in \mathbb{P}_{\alpha} \star \dot{\mathbb{O}}_{\alpha} = \mathbb{P}_{\beta}$. By induction hypothesis for (i) and (ii): there are countable X_0 and X_1 such that $p \in \mathbb{P}_{X_0}$ and \dot{q} is a \mathbb{P}_{X_1} -name. Let $X = X_0 \cup X_1 \cup \{\alpha\}$. Then $(p, \dot{q}) \in \mathbb{P}_X$. (ii) Let f be a \mathbb{P}_{β} -name for a real. There a countable maximal antichains $\{p_n^m : m \in \omega\} \subseteq \mathbb{P}_\beta$ and numbers $\{k_n^m : m \in \omega\}$, such that $p_n^m \Vdash f(n) = k_n^m$. By (i): there are countable X_n^m such that $p_n^m \in \mathbb{P}_{X_n^m}$. Let $X = \bigcup_{n \ m} X_n^m$. Since f is completely decided by p_n^m and k_n^m , it is \mathbb{P}_X -name.

Suslin ccc forcing Iteration of definable forcing Applications

Localization 2

Successor step: let $\beta = \alpha + 1$. (i) Let $(p, \dot{q}) \in \mathbb{P}_{\alpha} \star \dot{\mathbb{O}}_{\alpha} = \mathbb{P}_{\beta}$. By induction hypothesis for (i) and (ii): there are countable X_0 and X_1 such that $p \in \mathbb{P}_{X_0}$ and \dot{q} is a \mathbb{P}_{X_1} -name. Let $X = X_0 \cup X_1 \cup \{\alpha\}$. Then $(p, \dot{q}) \in \mathbb{P}_X$. (ii) Let f be a \mathbb{P}_{β} -name for a real. There a countable maximal antichains $\{p_n^m : m \in \omega\} \subseteq \mathbb{P}_\beta$ and numbers $\{k_n^m : m \in \omega\}$, such that $p_n^m \Vdash f(n) = k_n^m$. By (i): there are countable X_n^m such that $p_n^m \in \mathbb{P}_{X_n^m}$. Let $X = \bigcup_{n \ m} X_n^m$. Since f is completely decided by p_n^m and k_n^m , it is \mathbb{P}_X -name.

Limit step: (i) trivial. (ii) follows from (i) as above. \Box

Suslin ccc forcing Iteration of definable forcing Applications

Direct limit 1

Corollary (representation as direct limit)

Let $\mathcal{X} \subseteq \mathcal{P}(\delta)$ be a directed family of sets such that for every countable $Y \subseteq \delta$ there is $X \in \mathcal{X}$ with $Y \subseteq X$. Then $\mathbb{P}_{\delta} = \lim \operatorname{dir}_{X \in \mathcal{X}} \mathbb{P}_{X}$.

<ロト <同ト < 三ト < 三ト

MQ (P

Suslin ccc forcing Iteration of definable forcing Applications

Direct limit 1

Corollary (representation as direct limit)

Let $\mathcal{X} \subseteq \mathcal{P}(\delta)$ be a directed family of sets such that for every countable $Y \subseteq \delta$ there is $X \in \mathcal{X}$ with $Y \subseteq X$. Then $\mathbb{P}_{\delta} = \lim \operatorname{dir}_{X \in \mathcal{X}} \mathbb{P}_{X}$.

Proof:

By embeddability of fragments, the direct limit is a subset of \mathbb{P}_{δ} . By localization, then, the two sets are actually equal. \Box

<ロト <同ト < 三ト < 三ト

Suslin ccc forcing Iteration of definable forcing Applications

Direct limit 1

Corollary (representation as direct limit)

Let $\mathcal{X} \subseteq \mathcal{P}(\delta)$ be a directed family of sets such that for every countable $Y \subseteq \delta$ there is $X \in \mathcal{X}$ with $Y \subseteq X$. Then $\mathbb{P}_{\delta} = \lim \operatorname{dir}_{X \in \mathcal{X}} \mathbb{P}_{X}$.

Proof:

By embeddability of fragments, the direct limit is a subset of \mathbb{P}_{δ} . By localization, then, the two sets are actually equal. \Box

Corollary

```
\mathbb{P}_{\delta} = \lim \operatorname{dir} \{\mathbb{P}_{X} : X \subseteq \delta \text{ is countable} \}.
```

<ロト <同ト < 三ト < 三ト

Suslin ccc forcing Iteration of definable forcing Applications

Direct limit 1

Corollary (representation as direct limit)

Let $\mathcal{X} \subseteq \mathcal{P}(\delta)$ be a directed family of sets such that for every countable $Y \subseteq \delta$ there is $X \in \mathcal{X}$ with $Y \subseteq X$. Then $\mathbb{P}_{\delta} = \lim \operatorname{dir}_{X \in \mathcal{X}} \mathbb{P}_{X}$.

Proof:

By embeddability of fragments, the direct limit is a subset of \mathbb{P}_{δ} . By localization, then, the two sets are actually equal. \Box

Corollary

```
\mathbb{P}_{\delta} = \lim \operatorname{dir} \{\mathbb{P}_{X} : X \subseteq \delta \text{ is countable} \}.
```

Question

What can we say about the direct limit of finite fragments of Suslin ccc iterations? E.g., for Hechler forcing.

Suslin ccc forcing Iteration of definable forcing Applications

Direct limit 2

Lemma

Assume \mathbb{P} is Suslin ccc, and \mathbb{P}_{δ} is an iteration of Suslin ccc forcing. Consider $\mathbb{P} \star \dot{\mathbb{P}}_{\delta}$. No new real of $V^{\mathbb{P}} \setminus V$ belongs to $V^{\mathbb{P}_{\delta}}$ (in $V^{\mathbb{P}\star \dot{\mathbb{P}}_{\delta}}$).

イロト イポト イヨト イヨト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

Direct limit 2

Lemma

Assume \mathbb{P} is Suslin ccc, and \mathbb{P}_{δ} is an iteration of Suslin ccc forcing. Consider $\mathbb{P} \star \dot{\mathbb{P}}_{\delta}$. No new real of $V^{\mathbb{P}} \setminus V$ belongs to $V^{\mathbb{P}_{\delta}}$ (in $V^{\mathbb{P}\star\dot{\mathbb{P}}_{\delta}}$).

<u>Warning</u>: This is not true for iterations of forcing notions in general. For example, if s_0 is Sacks generic over V, and s_1 is Sacks generic over $V[s_0]$, then $s_0 \in V[s_1]$.

<ロト <同ト < 三ト < 三ト

Suslin ccc forcing Iteration of definable forcing Applications

Direct limit 2

Lemma

Assume \mathbb{P} is Suslin ccc, and \mathbb{P}_{δ} is an iteration of Suslin ccc forcing. Consider $\mathbb{P} \star \dot{\mathbb{P}}_{\delta}$. No new real of $V^{\mathbb{P}} \setminus V$ belongs to $V^{\mathbb{P}_{\delta}}$ (in $V^{\mathbb{P}\star \dot{\mathbb{P}}_{\delta}}$).

Corollary (representation as ω_1 -stage direct limit)

Let δ be uncountable. Let X_{α} , $\alpha < \omega_1$, be a strictly increasing sequence of subsets of δ with $\delta = \bigcup_{\alpha} X_{\alpha}$. Then $\mathbb{P}_{\delta} = \lim \operatorname{dir}_{\alpha} \mathbb{P}_{X_{\alpha}}$. Furthermore, (i) $\omega^{\omega} \cap V^{\mathbb{P}_{\delta}} = \bigcup_{\alpha} (\omega^{\omega} \cap V^{\mathbb{P}_{X_{\alpha}}})$ (ii) $\omega^{\omega} \cap (V^{\mathbb{P}_{X_{\alpha+1}}} \setminus V^{\mathbb{P}_{X_{\alpha}}}) \neq \emptyset$ for $\alpha < \omega_1$

Suslin ccc forcing Iteration of definable forcing Applications

Direct limit 2

Lemma

Assume \mathbb{P} is Suslin ccc, and \mathbb{P}_{δ} is an iteration of Suslin ccc forcing. Consider $\mathbb{P} \star \dot{\mathbb{P}}_{\delta}$. No new real of $V^{\mathbb{P}} \setminus V$ belongs to $V^{\mathbb{P}_{\delta}}$ (in $V^{\mathbb{P}\star \dot{\mathbb{P}}_{\delta}}$).

Corollary (representation as ω_1 -stage direct limit)

Let δ be uncountable. Let X_{α} , $\alpha < \omega_1$, be a strictly increasing sequence of subsets of δ with $\delta = \bigcup_{\alpha} X_{\alpha}$. Then $\mathbb{P}_{\delta} = \lim \operatorname{dir}_{\alpha} \mathbb{P}_{X_{\alpha}}$. Furthermore, (i) $\omega^{\omega} \cap V^{\mathbb{P}_{\delta}} = \bigcup_{\alpha} (\omega^{\omega} \cap V^{\mathbb{P}_{X_{\alpha}}})$ (ii) $\omega^{\omega} \cap (V^{\mathbb{P}_{X_{\alpha+1}}} \setminus V^{\mathbb{P}_{X_{\alpha}}}) \neq \emptyset$ for $\alpha < \omega_1$

Proof: first part: representation as direct limit. second part: (i) localization. (ii) apply lemma above.

Suslin ccc forcing Iteration of definable forcing Applications

1 Lecture 1: Definability

Suslin ccc forcingIteration of definable forcing

Applications

- 2 Lecture 2: Matrices
 - Extending ultrafilters
 - Matrix iterations
 - Applications
- 3 Lecture 3: Ultrapowers
 - Ultrapowers of p.o.'s
 - Ultrapowers and iterations
 - Applications
- 4 Lecture 4: Witnesses
 - The problem
 - The construction

< 17 ▶

→ Ξ → < Ξ</p>

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 1

For our applications, we need some of the basic *cardinal invariants of the continuum*.

<ロト <同ト < 三ト < 三ト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 1

For our applications, we need some of the basic *cardinal invariants of the continuum*.

For $f, g \in \omega^{\omega}$: $f \leq^* g$ (g eventually dominates f) $\iff f(n) \leq g(n)$ for all but finitely many n

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 1

For our applications, we need some of the basic cardinal invariants of the continuum.

For $f, g \in \omega^{\omega}$:

$$f \leq^* g$$
 (g eventually dominates f)
 $\iff f(n) \leq g(n)$ for all but finitely many n

$$\begin{split} \mathfrak{b} &:= \min\{|\mathcal{F}| : \mathcal{F} \text{ is unbounded in } (\omega^{\omega}, \leq^*)\}, \\ & \text{the bounding number.} \\ \mathfrak{d} &:= \min\{|\mathcal{F}| : \mathcal{F} \text{ is cofinal in } (\omega^{\omega}, \leq^*)\}, \text{ the dominating number.} \end{split}$$

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 2

For $A, B \subseteq \omega$:

 $A \subseteq^* B$ (A is almost contained in B) $\iff A \setminus B$ is finite

イロト イポト イヨト イヨト

SQA

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 2

For $A, B \subseteq \omega$:

 $A \subseteq^* B$ (A is almost contained in B) $\iff A \setminus B$ is finite

For $A, B \in [\omega]^{\omega}$:

A splits
$$B \iff |A \cap B| = |B \setminus A| = \aleph_0$$

イロト イポト イヨト イヨト

3

SQA

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 2

For $A, B \subseteq \omega$:

 $A \subseteq^* B$ (A is almost contained in B) $\iff A \setminus B$ is finite For $A, B \in [\omega]^{\omega}$:

A splits
$$B \iff |A \cap B| = |B \setminus A| = \aleph_0$$

 $\mathcal{F} \subseteq [\omega]^{\omega}$ is *splitting* if every member of $[\omega]^{\omega}$ is split by a member of \mathcal{F} .

 $\mathcal{F} \subseteq [\omega]^{\omega}$ is *unsplit* (or *unreaped*) if no member of $[\omega]^{\omega}$ splits all members of \mathcal{F} . I.e. $\forall A \in [\omega]^{\omega} \exists B \in \mathcal{F} (|A \cap B| < \aleph_0 \text{ or } B \subseteq^* A)$

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 2

For $A, B \subseteq \omega$:

 $A \subseteq^* B$ (A is almost contained in B) $\iff A \setminus B$ is finite For $A, B \in [\omega]^{\omega}$:

A splits
$$B \iff |A \cap B| = |B \setminus A| = \aleph_0$$

 $\mathcal{F} \subseteq [\omega]^{\omega}$ is *splitting* if every member of $[\omega]^{\omega}$ is split by a member of \mathcal{F} .

 $\mathcal{F} \subseteq [\omega]^{\omega}$ is *unsplit* (or *unreaped*) if no member of $[\omega]^{\omega}$ splits all members of \mathcal{F} .

 $\begin{aligned} \mathfrak{s} &:= \min\{|\mathcal{F}| : \mathcal{F} \text{ is splitting}\}, \text{ the splitting number.} \\ \mathfrak{r} &:= \min\{|\mathcal{F}| : \mathcal{F} \text{ is unsplit}\}, \text{ the reaping number.} \end{aligned}$

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 3

$\mathcal{D} \subseteq [\omega]^{\omega}$ dense: $\forall A \in [\omega]^{\omega} \exists B \in \mathcal{D} \ (B \subseteq^* A)$

Jörg Brendle Aspects of iterated forcing

イロト イポト イヨト イヨト

DQ CV

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 3

 $\mathcal{D} \subseteq [\omega]^{\omega} \text{ dense: } \forall A \in [\omega]^{\omega} \exists B \in \mathcal{D} \ (B \subseteq^* A)$ $\mathcal{D} \subseteq [\omega]^{\omega} \text{ open: } \forall A \in \mathcal{D} \ \forall B \subseteq^* A \ (B \in \mathcal{D})$

<ロト <同ト < 三ト < 三ト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 3

$$\mathcal{D} \subseteq [\omega]^{\omega} \text{ dense: } \forall A \in [\omega]^{\omega} \exists B \in \mathcal{D} (B \subseteq^* A)$$

$$\mathcal{D} \subseteq [\omega]^{\omega} \text{ open: } \forall A \in \mathcal{D} \forall B \subseteq^* A (B \in \mathcal{D})$$

- A family $\mathcal{D} \subseteq [\omega]^\omega$ is groupwise dense if
 - $\bullet \ \mathcal{D} \ \text{is open}$
 - given a partition $(I_n : n \in \omega)$ of ω into intervals, there is $B \in [\omega]^{\omega}$ such that $\bigcup_{n \in B} I_n \in \mathcal{D}$ (this implies, in particular, that \mathcal{D} is dense)

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 3

$$\mathcal{D} \subseteq [\omega]^{\omega} \text{ dense: } \forall A \in [\omega]^{\omega} \exists B \in \mathcal{D} (B \subseteq^* A)$$

$$\mathcal{D} \subseteq [\omega]^{\omega} \text{ open: } \forall A \in \mathcal{D} \forall B \subseteq^* A (B \in \mathcal{D})$$

- A family $\mathcal{D} \subseteq [\omega]^{\omega}$ is groupwise dense if
 - $\bullet \ \mathcal{D} \ \text{is open}$
 - given a partition (*I_n* : *n* ∈ ω) of ω into intervals, there is B ∈ [ω]^ω such that ⋃_{n∈B} *I_n* ∈ D (this implies, in particular, that D is dense)
- $\mathfrak{h} := \min\{|\mathfrak{D}| : \mathsf{all} \ \mathcal{D} \in \mathfrak{D} \text{ open dense and } \bigcap \mathfrak{D} = \emptyset\}$
 - the distributivity number.

< □ > < □ > < □ > < □ > < □ >

 $\mathfrak{g} := \min\{|\mathfrak{D}| : \text{all } \mathcal{D} \in \mathfrak{D} \text{ groupwise dense and } \bigcap \mathfrak{D} = \emptyset\}$ the *groupwise density number*.

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 4

 $\ensuremath{\mathcal{I}}$ ideal on the reals.

 $\operatorname{add}(\mathcal{I}) := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \text{ and } \bigcup \mathcal{F} \notin \mathcal{I}\}, \text{ the additivity of } \mathcal{I}.$ $\operatorname{cof}(\mathcal{I}) := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \text{ is a basis}\}, \text{ the cofinality of } \mathcal{I}.$

Basis: $\mathcal{F} \subseteq \mathcal{I}$ such every member of \mathcal{I} is contained in some member of \mathcal{F} .

<ロト <同ト < ヨト < ヨト -

Suslin ccc forcing Iteration of definable forcing Applications

Cardinal invariants of the continuum 4

 $\ensuremath{\mathcal{I}}$ ideal on the reals.

 $\operatorname{add}(\mathcal{I}) := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \text{ and } \bigcup \mathcal{F} \notin \mathcal{I}\}, \text{ the additivity of } \mathcal{I}.$ $\operatorname{cof}(\mathcal{I}) := \min\{|\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \text{ is a basis}\}, \text{ the cofinality of } \mathcal{I}.$

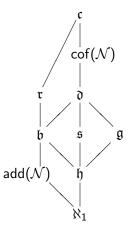
Basis: $\mathcal{F} \subseteq \mathcal{I}$ such every member of \mathcal{I} is contained in some member of \mathcal{F} .

Theorem

(i) $\mathfrak{h} \leq \min{\{\mathfrak{b}, \mathfrak{s}, \mathfrak{g}\}}$ and $\mathfrak{g} \leq \mathfrak{d}$ (ii) $\mathfrak{b} \leq \mathfrak{d}$ (iii) $\mathfrak{b} \leq \mathfrak{r}$ and dually $\mathfrak{s} \leq \mathfrak{d}$ (iv) $\operatorname{add}(\mathcal{N}) \leq \mathfrak{b}$ and dually $\mathfrak{d} \leq \operatorname{cof}(\mathcal{N})$ for the null ideal \mathcal{N}

Suslin ccc forcing Iteration of definable forcing Applications

ZFC-inequalities: a diagram



<ロ> <同> <同> < 同> < 同>

Suslin ccc forcing Iteration of definable forcing Applications

First application: \mathfrak{b} versus \mathfrak{g} 1

Theorem

Let λ be regular uncountable. Let \mathbb{P}_{λ} be an fsi of Suslin ccc forcing.

Then, in the \mathbb{P}_{λ} -extension, $\mathfrak{g} = \aleph_1$.

イロト イポト イヨト イヨト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

First application: \mathfrak{b} versus \mathfrak{g} 1

Theorem

Let λ be regular uncountable. Let \mathbb{P}_{λ} be an fsi of Suslin ccc forcing.

Then, in the \mathbb{P}_{λ} -extension, $\mathfrak{g} = \aleph_1$.

Corollary

```
Let \mathbb{D}_{\lambda} be the fsi of Hechler forcing \mathbb{D}.
In the \mathbb{D}_{\lambda}-extension, \mathfrak{b} = \mathfrak{d} = \lambda while \mathfrak{g} = \aleph_1.
In particular, \mathfrak{g} < \mathfrak{b} is consistent.
```

Suslin ccc forcing Iteration of definable forcing Applications

First application: \mathfrak{b} versus \mathfrak{g} 1

Theorem

Let λ be regular uncountable. Let \mathbb{P}_{λ} be an fsi of Suslin ccc forcing.

Then, in the \mathbb{P}_{λ} -extension, $\mathfrak{g} = \aleph_1$.

Corollary

Let \mathbb{D}_{λ} be the fsi of Hechler forcing \mathbb{D} . In the \mathbb{D}_{λ} -extension, $\mathfrak{b} = \mathfrak{d} = \lambda$ while $\mathfrak{g} = \aleph_1$. In particular, $\mathfrak{g} < \mathfrak{b}$ is consistent.

<u>Proof:</u> $\mathfrak{b} = \mathfrak{d} = \lambda$ because we add a λ -scale (a well-ordered dominating family of size λ). $\mathfrak{g} = \aleph_1$ follows from Theorem. \Box

Suslin ccc forcing Iteration of definable forcing Applications

First application: \mathfrak{b} versus \mathfrak{g} 1

Theorem

Let λ be regular uncountable. Let \mathbb{P}_{λ} be an fsi of Suslin ccc forcing.

Then, in the \mathbb{P}_{λ} -extension, $\mathfrak{g} = \aleph_1$.

Corollary

```
Let \mathbb{D}_{\lambda} be the fsi of Hechler forcing \mathbb{D}.
In the \mathbb{D}_{\lambda}-extension, \mathfrak{b} = \mathfrak{d} = \lambda while \mathfrak{g} = \aleph_1.
In particular, \mathfrak{g} < \mathfrak{b} is consistent.
```

Corollary

Let \mathbb{A}_{λ} be the fsi of amoeba forcing \mathbb{A} . In the \mathbb{A}_{λ} -extension, $\operatorname{add}(\mathcal{N}) = \operatorname{cof}(\mathcal{N}) = \lambda$ while $\mathfrak{g} = \aleph_1$. In particular, $\mathfrak{g} < \operatorname{add}(\mathcal{N})$ is consistent.

Suslin ccc forcing Iteration of definable forcing Applications

First application: \mathfrak{b} versus \mathfrak{g} 2

Theorem follows from:

Corollary (representation as ω_1 -stage direct limit)

Let δ be uncountable. Let X_{α} , $\alpha < \omega_1$ be a strictly increasing sequence of subsets of δ with $\delta = \bigcup_{\alpha} X_{\alpha}$. Then $\mathbb{P}_{\delta} = \lim \operatorname{dir}_{\alpha} \mathbb{P}_{X_{\alpha}}$. Furthermore, (i) $\omega^{\omega} \cap V^{\mathbb{P}_{\delta}} = \bigcup_{\alpha} (\omega^{\omega} \cap V^{\mathbb{P}_{X_{\alpha}}})$ (ii) $\omega^{\omega} \cap (V^{\mathbb{P}_{X_{\alpha+1}}} \setminus V^{\mathbb{P}_{X_{\alpha}}}) \neq \emptyset$ for $\alpha < \omega_1$

and the following lemma:

Suslin ccc forcing Iteration of definable forcing Applications

First application: \mathfrak{b} versus \mathfrak{g} 3

Lemma

Let κ be an uncountable cardinal. Assume there is an increasing chain of ZFC-models V_{α} , $\alpha < \kappa$, such that (i) $\omega^{\omega} \cap V = \bigcup_{\alpha < \kappa} (\omega^{\omega} \cap V_{\alpha})$ (ii) $\omega^{\omega} \cap (V_{\alpha+1} \setminus V_{\alpha}) \neq \emptyset$ for all $\alpha < \kappa$. Then $\mathfrak{g} \leq \kappa$.

<ロト <同ト < ヨト < ヨト -

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

First application: \mathfrak{b} versus \mathfrak{g} 3

Lemma

Let κ be an uncountable cardinal. Assume there is an increasing chain of ZFC-models V_{α} , $\alpha < \kappa$, such that (i) $\omega^{\omega} \cap V = \bigcup_{\alpha < \kappa} (\omega^{\omega} \cap V_{\alpha})$ (ii) $\omega^{\omega} \cap (V_{\alpha+1} \setminus V_{\alpha}) \neq \emptyset$ for all $\alpha < \kappa$. Then $\mathfrak{g} \leq \kappa$.

Proof: Let

$$\mathcal{D}_{lpha} = \{X \in [\omega]^{\omega} : X \text{ has no almost subset in } V_{lpha}\}$$

(i): intersection of \mathcal{D}_{α} is empty.

<ロト <同ト < ヨト < ヨト -

Suslin ccc forcing Iteration of definable forcing Applications

First application: \mathfrak{b} versus \mathfrak{g} 3

Lemma

Let κ be an uncountable cardinal. Assume there is an increasing chain of ZFC-models V_{α} , $\alpha < \kappa$, such that (i) $\omega^{\omega} \cap V = \bigcup_{\alpha < \kappa} (\omega^{\omega} \cap V_{\alpha})$ (ii) $\omega^{\omega} \cap (V_{\alpha+1} \setminus V_{\alpha}) \neq \emptyset$ for all $\alpha < \kappa$. Then $\mathfrak{g} \leq \kappa$.

Proof: Let

$$\mathcal{D}_{lpha} = \{X \in [\omega]^{\omega} : X ext{ has no almost subset in } V_{lpha}\}$$

(i): intersection of \mathcal{D}_{α} is empty. Check the \mathcal{D}_{α} are groupwise dense. Obviously, they are open.

<ロト <同ト < ヨト < ヨト -

Suslin ccc forcing Iteration of definable forcing Applications

First application: \mathfrak{b} versus \mathfrak{g} 4

Let $\mathcal{I} = (I_n : n \in \omega)$ be a partition of ω into intervals. (i): there is $\beta \ge \alpha$ such that $\mathcal{I} \in V_{\beta}$.

Jörg Brendle Aspects of iterated forcing

イロト イポト イヨト イヨト

DQ P

Suslin ccc forcing Iteration of definable forcing Applications

First application: \mathfrak{b} versus \mathfrak{g} 4

Let $\mathcal{I} = (I_n : n \in \omega)$ be a partition of ω into intervals. (i): there is $\beta \ge \alpha$ such that $\mathcal{I} \in V_{\beta}$. Let $\mathcal{A} \in V_{\beta}$ be a mad family which contains a perfect a.d. family \mathcal{B} .

(ii): \mathcal{B} has new branch A in $V_{\beta+1}$. A almost disjoint from \mathcal{A} . Let $C = \bigcup_{n \in A} I_n$.

<u>Claim</u>: $C \in D_{\beta}$ and thus $C \in D_{\alpha}$ as well.

< ロ > < 同 > < 回 > < 回 > .

Suslin ccc forcing Iteration of definable forcing Applications

First application: \mathfrak{b} versus \mathfrak{g} 4

Let $\mathcal{I} = (I_n : n \in \omega)$ be a partition of ω into intervals. (i): there is $\beta \ge \alpha$ such that $\mathcal{I} \in V_{\beta}$. Let $\mathcal{A} \in V_{\beta}$ be a mad family which contains a perfect a.d. family \mathcal{B} .

(ii): \mathcal{B} has new branch A in $V_{\beta+1}$. A almost disjoint from \mathcal{A} . Let $C = \bigcup_{n \in A} I_n$.

<u>Claim</u>: $C \in D_{\beta}$ and thus $C \in D_{\alpha}$ as well.

Suppose *C* has an almost subset $D \in V_{\beta}$. Let $E = \{n : I_n \cap D \neq \emptyset\}$. Clearly $E \subseteq^* A$ so that *E* is almost disjoint from *A*. On the other hand, *E* belongs to V_{β} because both *D* and *I* do. This contradicts the maximality of *A*. \Box

Suslin ccc forcing Iteration of definable forcing Applications

Second application: b versus s

Theorem (Judah-Shelah)

Let λ be regular uncountable. Let \mathbb{P}_{λ} be an fsi of Suslin ccc forcing.

Then the ground model reals form a splitting family in the \mathbb{P}_{λ} -extension.

イロト イポト イヨト イヨト

MQ (P

Suslin ccc forcing Iteration of definable forcing Applications

Second application: b versus s

Theorem (Judah-Shelah)

Let λ be regular uncountable. Let \mathbb{P}_{λ} be an fsi of Suslin ccc forcing.

Then the ground model reals form a splitting family in the \mathbb{P}_{λ} -extension.

Corollary (Judah-Shelah)

 $\mathfrak{s} < \mathfrak{b}$ is consistent. Even $\operatorname{add}(\mathcal{N}) < \mathfrak{b}$ is consistent.

Suslin ccc forcing Iteration of definable forcing Applications

Second application: b versus s

Theorem (Judah-Shelah)

Let λ be regular uncountable. Let \mathbb{P}_{λ} be an fsi of Suslin ccc forcing.

Then the ground model reals form a splitting family in the \mathbb{P}_{λ} -extension.

Corollary (Judah-Shelah)

 $\mathfrak{s} < \mathfrak{b}$ is consistent. Even $\operatorname{add}(\mathcal{N}) < \mathfrak{b}$ is consistent.

<u>Proof</u>: Use again iteration of \mathbb{D} (Hechler) or \mathbb{A} (amoeba). \Box

Suslin ccc forcing Iteration of definable forcing Applications

Second application: b versus s

Theorem (Judah-Shelah)

Let λ be regular uncountable. Let \mathbb{P}_{λ} be an fsi of Suslin ccc forcing. Then the ground model reals form a splitting family in the \mathbb{P}_{λ} -extension.

Corollary (Judah-Shelah)

 $\mathfrak{s} < \mathfrak{b}$ is consistent. Even $\operatorname{add}(\mathcal{N}) < \mathfrak{b}$ is consistent.

<u>Proof</u>: Use again iteration of \mathbb{D} (Hechler) or \mathbb{A} (amoeba). \Box

<u>Remark</u>: $CON(\mathfrak{s} < \mathfrak{b})$ was first shown by Baumgartner-Dordal using the same model but a different argument.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Extending ultrafilters Matrix iterations Applications

- Lecture 1: Definability
 - Suslin ccc forcing
 - Iteration of definable forcing
 - Applications

2 Lecture 2: Matrices

- Extending ultrafilters
- Matrix iterations
- Applications

3 Lecture 3: Ultrapowers

- Ultrapowers of p.o.'s
- Ultrapowers and iterations
- Applications
- 4 Lecture 4: Witnesses
 - The problem
 - The construction

A (1) > A (2) > A

-

MQ (P

Extending ultrafilters Matrix iterations Applications

Absoluteness for non-definable forcing?

We investigate the problem to which extent the embeddability results and iteration techniques of lecture 1 can be generalized to the non-definable context.

イロト イポト イヨト イヨト

MQ (P

Extending ultrafilters Matrix iterations Applications

Absoluteness for non-definable forcing?

We investigate the problem to which extent the embeddability results and iteration techniques of lecture 1 can be generalized to the non-definable context.

Since absoluteness of maximal antichains usually fails badly for non-ccc p.o.'s, we stay in the realm of ccc forcing. Relatively simple non-definable ccc forcing notions can be associated naturally with ultrafilters on ω .

Extending ultrafilters Matrix iterations Applications

Mathias forcing

Let \mathcal{F} be a filter on ω . Mathias forcing with \mathcal{F} , $\mathbb{M}_{\mathcal{F}}$:

- Conditions: pairs (s, A) such that $s \in [\omega]^{<\omega}$, $A \in \mathcal{F}$, and max $s < \min A$
- Order: $(t, B) \leq (s, A)$ if $t \supseteq s$, $t \setminus s \subseteq A$, and $B \subseteq A$

Extending ultrafilters Matrix iterations Applications

Mathias forcing

Let \mathcal{F} be a filter on ω . Mathias forcing with \mathcal{F} , $\mathbb{M}_{\mathcal{F}}$:

- Conditions: pairs (s, A) such that $s \in [\omega]^{<\omega}$, $A \in \mathcal{F}$, and max $s < \min A$
- Order: $(t, B) \leq (s, A)$ if $t \supseteq s$, $t \setminus s \subseteq A$, and $B \subseteq A$

Properties:

• $\sigma\text{-centered}$

Extending ultrafilters Matrix iterations Applications

Mathias forcing

Let \mathcal{F} be a filter on ω . Mathias forcing with \mathcal{F} , $\mathbb{M}_{\mathcal{F}}$:

- Conditions: pairs (s, A) such that $s \in [\omega]^{<\omega}$, $A \in \mathcal{F}$, and max $s < \min A$
- Order: $(t, B) \leq (s, A)$ if $t \supseteq s$, $t \setminus s \subseteq A$, and $B \subseteq A$

Properties:

- $\bullet \ \sigma\text{-centered}$
- adds a generic Mathias real

$$m = \bigcup \{s : \text{ there is } A \in \mathcal{F} \text{ such that } (s, A) \in G \}$$

<ロト <同ト < ヨト < ヨト -

Extending ultrafilters Matrix iterations Applications

Mathias forcing

Let \mathcal{F} be a filter on ω . Mathias forcing with \mathcal{F} , $\mathbb{M}_{\mathcal{F}}$:

- Conditions: pairs (s, A) such that $s \in [\omega]^{<\omega}$, $A \in \mathcal{F}$, and max $s < \min A$
- Order: $(t,B) \leq (s,A)$ if $t \supseteq s$, $t \setminus s \subseteq A$, and $B \subseteq A$

Properties:

- $\bullet \ \sigma\text{-centered}$
- adds a generic Mathias real

$$m = \bigcup \{s : \text{ there is } A \in \mathcal{F} \text{ such that } (s, A) \in G \}$$

• *m* is a *pseudointersection* of the filter \mathcal{F} (*m* \subseteq ^{*} *A* for all *A* \in \mathcal{F})

Extending ultrafilters Matrix iterations Applications

Laver forcing

Laver forcing with \mathcal{F} , $\mathbb{L}_{\mathcal{F}}$:

- Conditions: trees $T \subseteq \omega^{<\omega}$ such that: for all $s \in T$ with stem $(T) \subseteq s$, $\operatorname{succ}_T(s) = \{n : s \in T\} \in \mathcal{F}.$
- Order: inclusion

Extending ultrafilters Matrix iterations Applications

Laver forcing

Laver forcing with \mathcal{F} , $\mathbb{L}_{\mathcal{F}}$:

- Conditions: trees $T \subseteq \omega^{<\omega}$ such that: for all $s \in T$ with stem $(T) \subseteq s$, $\operatorname{succ}_T(s) = \{n : s \in T\} \in \mathcal{F}.$
- Order: inclusion

Properties:

• $\sigma\text{-centered}$

Extending ultrafilters Matrix iterations Applications

Laver forcing

Laver forcing with \mathcal{F} , $\mathbb{L}_{\mathcal{F}}$:

- Conditions: trees $T \subseteq \omega^{<\omega}$ such that: for all $s \in T$ with stem $(T) \subseteq s$, succ $_T(s) = \{n : s^n \in T\} \in \mathcal{F}$.
- Order: inclusion

Properties:

- $\bullet \ \sigma\text{-centered}$
- adds a generic Laver real

$$\ell = \bigcup \{ \operatorname{stem}(T) : T \in G \}$$

Extending ultrafilters Matrix iterations Applications

Laver forcing

Laver forcing with \mathcal{F} , $\mathbb{L}_{\mathcal{F}}$:

- Conditions: trees $T \subseteq \omega^{<\omega}$ such that: for all $s \in T$ with stem $(T) \subseteq s$, succ $_T(s) = \{n : s \cap \in T\} \in \mathcal{F}$.
- Order: inclusion

Properties:

- $\sigma\text{-centered}$
- adds a generic Laver real

$$\ell = \bigcup \{ \operatorname{stem}(T) : T \in G \}$$

 $\bullet \ \ell$ is a dominating real

Extending ultrafilters Matrix iterations Applications

Laver forcing

Laver forcing with \mathcal{F} , $\mathbb{L}_{\mathcal{F}}$:

- Conditions: trees $T \subseteq \omega^{<\omega}$ such that: for all $s \in T$ with stem $(T) \subseteq s$, succ $_T(s) = \{n : s \cap \in T\} \in \mathcal{F}$.
- Order: inclusion

Properties:

- $\sigma\text{-centered}$
- adds a generic Laver real

$$\ell = \bigcup \{ \operatorname{stem}(T) : T \in G \}$$

- $\bullet \ \ell$ is a dominating real
- $\bullet ~ \mathrm{ran}(\ell)$ is a pseudointersection of $\mathcal F$

Extending ultrafilters Matrix iterations Applications

Absoluteness for Mathias or Laver forcing?

Assume we have models $M \subseteq N$, and filters $\mathcal{F} \in M$ and $\mathcal{G} \in N$ extending \mathcal{F} .

イロト イポト イヨト イヨト

DQ P

Extending ultrafilters Matrix iterations Applications

Absoluteness for Mathias or Laver forcing?

Assume we have models $M \subseteq N$, and filters $\mathcal{F} \in M$ and $\mathcal{G} \in N$ extending \mathcal{F} .

Under which circumstances is every maximal antichain $A \subseteq \mathbb{M}_{\mathcal{F}}$ in M still a maximal antichain of $\mathbb{M}_{\mathcal{G}}$ is N? What about $\mathbb{L}_{\mathcal{F}}$ and $\mathbb{L}_{\mathcal{G}}$?

Extending ultrafilters Matrix iterations Applications

Absoluteness for Mathias or Laver forcing?

Assume we have models $M \subseteq N$, and filters $\mathcal{F} \in M$ and $\mathcal{G} \in N$ extending \mathcal{F} .

Under which circumstances is every maximal antichain $A \subseteq \mathbb{M}_{\mathcal{F}}$ in M still a maximal antichain of $\mathbb{M}_{\mathcal{G}}$ is N? What about $\mathbb{L}_{\mathcal{F}}$ and $\mathbb{L}_{\mathcal{G}}$? This is trivially true if $\mathcal{G} = \mathcal{F}$, but the situation we are interested in is when \mathcal{G} properly extends \mathcal{F} .

The answer is easier for Laver forcing:

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 1

Lemma (preservation of maximal antichains)

The following are equivalent:

- (i) every $\mathcal F\text{-positive set}$ in M is still $\mathcal G\text{-positive}$ in N
- (ii) every maximal antichain of L_F in M is still a maximal antichain of L_G in N

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 1

Lemma (preservation of maximal antichains)

The following are equivalent:

- (i) every $\mathcal F\text{-positive set}$ in M is still $\mathcal G\text{-positive}$ in N
- (ii) every maximal antichain of L_F in M is still a maximal antichain of L_G in N

Proof: Backwards direction: easy!

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 1

Lemma (preservation of maximal antichains)

The following are equivalent:

(i) every $\mathcal F\text{-positive set}$ in M is still $\mathcal G\text{-positive}$ in N

 (ii) every maximal antichain of L_F in M is still a maximal antichain of L_G in N

<u>Proof:</u> Backwards direction: easy! Assume $X \in M$ is \mathcal{F} -positive, but $\omega \setminus X \in \mathcal{G}$. Then:

$$D = \{T \in \mathbb{L}_{\mathcal{F}} : \operatorname{stem}(T)(|\operatorname{stem}(T)| - 1) \in X\}$$

dense in $\mathbb{L}_{\mathcal{F}}$. Yet: $S = (\omega \setminus X)^{<\omega} \in \mathbb{L}_{\mathcal{G}}$ is incompatible with every element of D. Thus no maximal antichain $A \subseteq D$ of M survives.

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 2

Forwards direction: rank argument!

イロト イポト イヨト イヨト

DQ (P

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 2

Forwards direction: rank argument!

Let $A \in M$ be a maximal antichain in $\mathbb{L}_{\mathcal{F}}$. By recursion on $\alpha < \omega_1$, define in M when $\operatorname{rank}(s) = \alpha$ for $s \in \omega^{<\omega}$.

• $\operatorname{rank}(s) = 0$ if $\exists T \in A$ such that $\operatorname{stem}(T) \subseteq s \in T$.

イロト イポト イヨト イヨト

MQ (P

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 2

Forwards direction: rank argument!

Let $A \in M$ be a maximal antichain in $\mathbb{L}_{\mathcal{F}}$. By recursion on $\alpha < \omega_1$, define in M when $\operatorname{rank}(s) = \alpha$ for $s \in \omega^{<\omega}$.

• $\operatorname{rank}(s) = 0$ if $\exists T \in A$ such that $\operatorname{stem}(T) \subseteq s \in T$.

•
$$\operatorname{rank}(s) = \alpha$$
 if

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 2

Forwards direction: rank argument!

Let $A \in M$ be a maximal antichain in $\mathbb{L}_{\mathcal{F}}$. By recursion on $\alpha < \omega_1$, define in M when $\operatorname{rank}(s) = \alpha$ for $s \in \omega^{<\omega}$.

- $\operatorname{rank}(s) = 0$ if $\exists T \in A$ such that $\operatorname{stem}(T) \subseteq s \in T$.
- $\operatorname{rank}(s) = \alpha$ if

• there is no $\beta < \alpha$ with $\operatorname{rank}(s) = \beta$, and

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 2

Forwards direction: rank argument!

Let $A \in M$ be a maximal antichain in $\mathbb{L}_{\mathcal{F}}$. By recursion on $\alpha < \omega_1$, define in M when $\operatorname{rank}(s) = \alpha$ for $s \in \omega^{<\omega}$.

- $\operatorname{rank}(s) = 0$ if $\exists T \in A$ such that $\operatorname{stem}(T) \subseteq s \in T$.
- $\operatorname{rank}(s) = \alpha$ if
 - there is no $\beta < \alpha$ with $\operatorname{rank}(s) = \beta$, and
 - $\{n : \operatorname{rank}(s n) < \alpha\}$ is \mathcal{F} -positive.

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 2

Forwards direction: rank argument!

Let $A \in M$ be a maximal antichain in $\mathbb{L}_{\mathcal{F}}$. By recursion on

 $\alpha < \omega_1$, define in *M* when rank(*s*) = α for $s \in \omega^{<\omega}$.

- $\operatorname{rank}(s) = 0$ if $\exists T \in A$ such that $\operatorname{stem}(T) \subseteq s \in T$.
- $\operatorname{rank}(s) = \alpha$ if
 - there is no $\beta < \alpha$ with $\operatorname{rank}(s) = \beta$, and
 - $\{n : \operatorname{rank}(\hat{s}n) < \alpha\}$ is \mathcal{F} -positive.

<u>Claim</u>: for every $s \in \omega^{<\omega}$, rank(s) defined (thus $< \omega_1$).

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 2

Forwards direction: rank argument!

Let $A \in M$ be a maximal antichain in $\mathbb{L}_{\mathcal{F}}$. By recursion on

 $\alpha < \omega_1$, define in *M* when rank(*s*) = α for *s* $\in \omega^{<\omega}$.

- $\operatorname{rank}(s) = 0$ if $\exists T \in A$ such that $\operatorname{stem}(T) \subseteq s \in T$.
- $\operatorname{rank}(s) = \alpha$ if
 - there is no $\beta < \alpha$ with $\operatorname{rank}(s) = \beta$, and
 - $\{n : \operatorname{rank}(s^n) < \alpha\}$ is \mathcal{F} -positive.

<u>Claim</u>: for every $s \in \omega^{<\omega}$, rank(s) defined (thus $< \omega_1$). Suppose rank(s) undefined for some s. Then $\{n : \operatorname{rank}(s^n) \text{ is undefined}\} \in \mathcal{F}$. Recursively build tree $S \in \mathbb{L}_{\mathcal{F}}$ such that stem(S) = s and for all $t \supseteq s$ in S, rank(t) is undefined.

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 2

Forwards direction: rank argument!

Let $A \in M$ be a maximal antichain in $\mathbb{L}_{\mathcal{F}}$. By recursion on

 $\alpha < \omega_1$, define in *M* when rank(*s*) = α for *s* $\in \omega^{<\omega}$.

- $\operatorname{rank}(s) = 0$ if $\exists T \in A$ such that $\operatorname{stem}(T) \subseteq s \in T$.
- $\operatorname{rank}(s) = \alpha$ if
 - there is no $\beta < \alpha$ with $\operatorname{rank}(s) = \beta$, and
 - $\{n : \operatorname{rank}(\hat{sn}) < \alpha\}$ is \mathcal{F} -positive.

<u>Claim</u>: for every $s \in \omega^{<\omega}$, rank(s) defined (thus $< \omega_1$). Suppose rank(s) undefined for some s. Thus, $(s = -1)(s^2)$ is a set fixed by $\in \mathcal{T}$.

Then $\{n : \operatorname{rank}(s^n) \text{ is undefined}\} \in \mathcal{F}$.

Recursively build tree $S \in \mathbb{L}_{\mathcal{F}}$ such that $\operatorname{stem}(S) = s$ and for all $t \supseteq s$ in S, $\operatorname{rank}(t)$ is undefined.

Let $T \in A$ be compatible with S with common extension U. Then: stem $(T) \subseteq$ stem $(U) \in U \subseteq T$ so that rank(stem(U)) = 0. Also: stem $(S) \subseteq$ stem $(U) \in U \subseteq S$ so that rank(stem(U)) undef.

200

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 3

Let $S \in N$ be a condition in $\mathbb{L}_{\mathcal{G}}$. Put s = stem(S).

Jörg Brendle Aspects of iterated forcing

イロト イポト イヨト イヨト

SQA

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 3

Let $S \in N$ be a condition in $\mathbb{L}_{\mathcal{G}}$. Put s = stem(S). By induction on rank(s), show there is $T \in A$ compatible with S.

イロト イポト イヨト イヨト

MQ (P

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 3

Let $S \in N$ be a condition in $\mathbb{L}_{\mathcal{G}}$. Put s = stem(S). By induction on rank(s), show there is $T \in A$ compatible with S.

 rank(s) = 0: there is T ∈ A such that stem(T) ⊆ s ∈ T. Compatibility: straightforward.

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 3

Let $S \in N$ be a condition in $\mathbb{L}_{\mathcal{G}}$. Put s = stem(S). By induction on rank(s), show there is $T \in A$ compatible with S.

- rank(s) = 0: there is T ∈ A such that stem(T) ⊆ s ∈ T. Compatibility: straightforward.
- rank(s) > 0: Consider {n : rank(sⁿ) < rank(s)}.
 This set is *F*-positive and, by assumption, still *G*-positive.

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver forcing 3

Let $S \in N$ be a condition in $\mathbb{L}_{\mathcal{G}}$. Put s = stem(S). By induction on rank(s), show there is $T \in A$ compatible with S.

rank(s) = 0: there is T ∈ A such that stem(T) ⊆ s ∈ T.
 Compatibility: straightforward.

rank(s) > 0: Consider {n : rank(sⁿ) < rank(s)}. This set is *F*-positive and, by assumption, still *G*-positive. Hence there is n ∈ succ₅(s) with rank(sⁿ) < rank(s). Consider S_{sⁿ} = {t ∈ S : t ⊆ s or sⁿ ⊆ t}. This is a subtree of S with stem sⁿ. By induction hypothesis, there is T ∈ A compatible with S_{sⁿ}. But then T is also compatible with S. □

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver and Mathias forcing

Corollary (Shelah)

Let \mathcal{U} be an ultrafilter in M and let \mathcal{V} be an ultrafilter in N extending \mathcal{U} . Then every maximal antichain of $\mathbb{L}_{\mathcal{U}}$ in M is still a maximal antichain of $\mathbb{L}_{\mathcal{V}}$ in N.

Extending ultrafilters Matrix iterations Applications

Absoluteness for Laver and Mathias forcing

Corollary (Shelah)

Let \mathcal{U} be an ultrafilter in M and let \mathcal{V} be an ultrafilter in N extending \mathcal{U} . Then every maximal antichain of $\mathbb{L}_{\mathcal{U}}$ in M is still a maximal antichain of $\mathbb{L}_{\mathcal{V}}$ in N.

Even this special case fails for Mathias forcing:

Example

Assume $\mathcal{U} \in M$ is not Ramsey, and assume there is a Cohen real in N over M. Then there are an ultrafilter $\mathcal{V} \supseteq \mathcal{U}$ in N and a maximal antichain $A \subseteq \mathbb{M}_{\mathcal{U}}$ in M which is not maximal in $\mathbb{M}_{\mathcal{V}}$.

<ロト <同ト < 国ト < 国ト

Extending ultrafilters Matrix iterations Applications

Absoluteness for Mathias forcing

On the other hand, given an arbitrary $\mathcal U,$ we can always find $\mathcal V$ such that maximal antichains are preserved:

イロト イポト イヨト イヨト

DQ P

Extending ultrafilters Matrix iterations Applications

Absoluteness for Mathias forcing

On the other hand, given an arbitrary $\mathcal U,$ we can always find $\mathcal V$ such that maximal antichains are preserved:

Lemma (Blass-Shelah)

Let \mathcal{U} be an ultrafilter in M. Also assume there is $c \in \omega^{\omega} \cap N$ unbounded over M. Then there is an ultrafilter $\mathcal{V} \supseteq \mathcal{U}$ in N such that:

- (i) every maximal antichain of $\mathbb{M}_{\mathcal{U}}$ in M is still a maximal antichain of $\mathbb{M}_{\mathcal{V}}$ in N
- (ii) c is unbounded over $M^{\mathbb{M}_{\mathcal{U}}}$ in $N^{\mathbb{M}_{\mathcal{V}}}$.

Extending ultrafilters Matrix iterations Applications

- Lecture 1: Definability
 - Suslin ccc forcing
 - Iteration of definable forcing
 - Applications

2 Lecture 2: Matrices

- Extending ultrafilters
- Matrix iterations
- Applications
- 3 Lecture 3: Ultrapowers
 - Ultrapowers of p.o.'s
 - Ultrapowers and iterations
 - Applications
- 4 Lecture 4: Witnesses
 - The problem
 - The construction

Extending ultrafilters Matrix iterations Applications

Complete embeddability

Using these absoluteness results

- we obtain complete embeddability
- we build long iterations which can be realized as direct limits of "short iterations"

as in lecture 1.

Extending ultrafilters Matrix iterations Applications

Complete embeddability

Using these absoluteness results

- we obtain complete embeddability
- we build long iterations which can be realized as direct limits of "short iterations"

as in lecture 1. Recall from lecture 1:

Lemma (preservation of embeddability in iterations)

Let $\mathbb{P}_0 <\circ \mathbb{P}_1$ be p.o.'s. Let $\dot{\mathbb{Q}}_i$ be \mathbb{P}_i -names for p.o.'s such that $\mathbb{P}_1 \Vdash \dot{\mathbb{Q}}_0 \subseteq \dot{\mathbb{Q}}_1$ and all maximal antichains of $\dot{\mathbb{Q}}_0$ in $V^{\mathbb{P}_0}$ are maximal antichains of $\dot{\mathbb{Q}}_1$ in $V^{\mathbb{P}_1}$. Then $\mathbb{P}_0 \star \dot{\mathbb{Q}}_0 <\circ \mathbb{P}_1 \star \dot{\mathbb{Q}}_1$.

In our context, this means:

<ロト <同ト < 国ト < 国ト

Extending ultrafilters Matrix iterations Applications

Complete embeddability

Using these absoluteness results

- we obtain complete embeddability
- we build long iterations which can be realized as direct limits of "short iterations"

as in lecture 1.

Lemma (preservation of embeddability in iterations)

Let $\mathbb{P}_0 < \circ \mathbb{P}_1$ be p.o.'s. Let $\dot{\mathcal{F}}_i$ be \mathbb{P}_i -names for filters such that $\mathbb{P}_1 \Vdash \dot{\mathcal{F}}_0 \subseteq \dot{\mathcal{F}}_1$ and all maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}_0}$ in $V^{\mathbb{P}_0}$ are maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}_1}$ in $V^{\mathbb{P}_1}$ where $\mathbb{X} = \mathbb{L}, \mathbb{M}$. Then $\mathbb{P}_0 \star \dot{\mathbb{X}}_{\dot{\mathcal{F}}_0} < \circ \mathbb{P}_1 \star \dot{\mathbb{X}}_{\dot{\mathcal{F}}_1}$.

Extending ultrafilters Matrix iterations Applications

Matrices: the first step 1

Let $\mu < \lambda$ be uncountable regular cardinals. Assume $(\mathbb{P}_0^{\gamma} : \gamma \leq \mu)$ is a ccc iteration such that $\mathbb{P}_0^{\mu} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}_0^{\gamma}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

DQ P

Extending ultrafilters Matrix iterations Applications

Matrices: the first step 1

Let $\mu < \lambda$ be uncountable regular cardinals. Assume $(\mathbb{P}_0^{\gamma} : \gamma \leq \mu)$ is a ccc iteration such that $\mathbb{P}_0^{\mu} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}_0^{\gamma}$.

By recursion on γ choose \mathbb{P}_0^{γ} -names for filters $\dot{\mathcal{F}}_0^{\gamma}$ such that

- $\mathbb{P}_0^{\delta} \Vdash \dot{\mathcal{F}}_0^{\gamma} \subseteq \dot{\mathcal{F}}_0^{\delta}$ for $\gamma < \delta$
- all maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}_0^{\gamma}}$ in $V^{\mathbb{P}_0^{\gamma}}$ are maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}_0^{\delta}}$ in $V^{\mathbb{P}_0^{\delta}}$ where $\mathbb{X} = \mathbb{L}, \mathbb{M}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Extending ultrafilters Matrix iterations Applications

Matrices: the first step 1

Let $\mu < \lambda$ be uncountable regular cardinals. Assume $(\mathbb{P}_0^{\gamma} : \gamma \leq \mu)$ is a ccc iteration such that $\mathbb{P}_0^{\mu} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}_0^{\gamma}$.

By recursion on γ choose \mathbb{P}_0^{γ} -names for filters $\dot{\mathcal{F}}_0^{\gamma}$ such that

- $\mathbb{P}_0^{\delta} \Vdash \dot{\mathcal{F}}_0^{\gamma} \subseteq \dot{\mathcal{F}}_0^{\delta}$ for $\gamma < \delta$
- all maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}_{0}^{\gamma}}$ in $V^{\mathbb{P}_{0}^{\gamma}}$ are maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}_{0}^{\delta}}$ in $V^{\mathbb{P}_{0}^{\delta}}$ where $\mathbb{X} = \mathbb{L}, \mathbb{M}$ Then let $\mathbb{P}_{1}^{\gamma} = \mathbb{P}_{0}^{\gamma} \star \mathbb{X}_{\dot{\mathcal{F}}_{1}^{\gamma}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Extending ultrafilters Matrix iterations Applications

Matrices: the first step 2

Properties:

• if x is $\mathbb{X}_{\dot{\mathcal{F}}_{0}^{\delta}}$ -generic over $V^{\mathbb{P}_{0}^{\delta}}$, then it is also $\mathbb{X}_{\dot{\mathcal{F}}_{0}^{\gamma}}$ -generic over $V^{\mathbb{P}_{0}^{\gamma}}$ for $\gamma < \delta$

(by preservation of maximal antichains)

Extending ultrafilters Matrix iterations Applications

Matrices: the first step 2

Properties:

• if x is $\mathbb{X}_{\dot{\mathcal{F}}_{0}^{\delta}}$ -generic over $V^{\mathbb{P}_{0}^{\delta}}$, then it is also $\mathbb{X}_{\dot{\mathcal{F}}_{0}^{\gamma}}$ -generic over $V^{\mathbb{P}_{0}^{\gamma}}$ for $\gamma < \delta$

(by preservation of maximal antichains)

• $\mathbb{P}_1^{\gamma} < \circ \mathbb{P}_1^{\delta}$ for $\gamma < \delta$ (by preservation of embeddability)

<ロト <同ト < 国ト < 国ト

Extending ultrafilters Matrix iterations Applications

Matrices: the first step 2

Properties:

• if x is $\mathbb{X}_{\dot{\mathcal{F}}_{0}^{\delta}}$ -generic over $V^{\mathbb{P}_{0}^{\delta}}$, then it is also $\mathbb{X}_{\dot{\mathcal{F}}_{0}^{\gamma}}$ -generic over $V^{\mathbb{P}_{0}^{\gamma}}$ for $\gamma < \delta$

(by preservation of maximal antichains)

- $\mathbb{P}_1^{\gamma} < \circ \mathbb{P}_1^{\delta}$ for $\gamma < \delta$ (by preservation of embeddability)
- $\mathbb{P}_1^{\mu} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}_1^{\gamma}$

Extending ultrafilters Matrix iterations Applications

Matrices: the first step 2

Properties:

• if x is $\mathbb{X}_{\dot{\mathcal{F}}^{\gamma}_{0}}$ -generic over $V^{\mathbb{P}^{\delta}_{0}}$, then it is also $\mathbb{X}_{\dot{\mathcal{F}}^{\gamma}_{0}}$ -generic over $V^{\mathbb{P}^{\gamma}_{0}}$ for $\gamma < \delta$

(by preservation of maximal antichains)

- $\mathbb{P}_1^{\gamma} < \circ \mathbb{P}_1^{\delta}$ for $\gamma < \delta$ (by preservation of embeddability)
- $\mathbb{P}_1^{\mu} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}_1^{\gamma}$

•
$$V_1^{\mu} \cap \omega^{\omega} = \bigcup_{\gamma < \mu} V_1^{\gamma} \cap \omega^{\omega}$$

Extending ultrafilters Matrix iterations Applications

Matrices: the first step 2

Properties:

• if x is $\mathbb{X}_{\dot{\mathcal{F}}_0^{\delta}}$ -generic over $V^{\mathbb{P}_0^{\delta}}$, then it is also $\mathbb{X}_{\dot{\mathcal{F}}_0^{\gamma}}$ -generic over $V^{\mathbb{P}_0^{\gamma}}$ for $\gamma < \delta$

(by preservation of maximal antichains)

•
$$\mathbb{P}_1^{\gamma} < \circ \mathbb{P}_1^{\delta}$$
 for $\gamma < \delta$ (by preservation of embeddability)

•
$$\mathbb{P}_1^{\mu} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}_1^{\gamma}$$

•
$$V_1^{\mu} \cap \omega^{\omega} = \bigcup_{\gamma < \mu} V_1^{\gamma} \cap \omega^{\omega}$$

In particular, $(\mathbb{P}_1^{\gamma} : \gamma \leq \mu)$ is a ccc iteration such that $\mathbb{P}_1^{\mu} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}_1^{\gamma}$.

Extending ultrafilters Matrix iterations Applications

Matrices: the general case

More generally, by recursion on $\alpha < \lambda$, build finite support iterations ($\mathbb{P}^{\gamma}_{\alpha} : \alpha \leq \lambda$), $\gamma \leq \mu$, such that (i) $\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$ for $\gamma < \delta$

イロト イポト イヨト イヨト

MQ (P

Extending ultrafilters Matrix iterations Applications

Matrices: the general case

More generally, by recursion on $\alpha < \lambda$, build finite support iterations ($\mathbb{P}^{\gamma}_{\alpha} : \alpha \leq \lambda$), $\gamma \leq \mu$, such that (i) $\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$ for $\gamma < \delta$ (ii) $\mathbb{P}^{\mu}_{\alpha} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}^{\gamma}_{\alpha}$

イロト イポト イヨト イヨト

MQ (P

Extending ultrafilters Matrix iterations Applications

Matrices: the general case

More generally, by recursion on $\alpha < \lambda$, build finite support iterations ($\mathbb{P}^{\gamma}_{\alpha} : \alpha \leq \lambda$), $\gamma \leq \mu$, such that (i) $\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$ for $\gamma < \delta$ (ii) $\mathbb{P}^{\mu}_{\alpha} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}^{\gamma}_{\alpha}$ (iii) $V^{\mu}_{\alpha} \cap \omega^{\omega} = \bigcup_{\gamma < \mu} V^{\gamma}_{\alpha} \cap \omega^{\omega}$

Extending ultrafilters Matrix iterations Applications

Matrices: the general case

More generally, by recursion on $\alpha < \lambda$, build finite support iterations ($\mathbb{P}^{\gamma}_{\alpha} : \alpha \leq \lambda$), $\gamma \leq \mu$, such that (i) $\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$ for $\gamma < \delta$ (ii) $\mathbb{P}^{\mu}_{\alpha} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}^{\gamma}_{\alpha}$ (iii) $V^{\mu}_{\alpha} \cap \omega^{\omega} = \bigcup_{\gamma < \mu} V^{\gamma}_{\alpha} \cap \omega^{\omega}$ (iv) if $\beta = \alpha + 1$ is a successor, we have $\mathbb{P}^{\gamma}_{\alpha}$ -names for filters $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ such that

Extending ultrafilters Matrix iterations Applications

Matrices: the general case

More generally, by recursion on $\alpha < \lambda$, build finite support iterations ($\mathbb{P}^{\gamma}_{\alpha} : \alpha \leq \lambda$), $\gamma \leq \mu$, such that (i) $\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$ for $\gamma < \delta$ (ii) $\mathbb{P}^{\mu}_{\alpha} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}^{\gamma}_{\alpha}$ (iii) $V^{\mu}_{\alpha} \cap \omega^{\omega} = \bigcup_{\gamma < \mu} V^{\gamma}_{\alpha} \cap \omega^{\omega}$ (iv) if $\beta = \alpha + 1$ is a successor, we have $\mathbb{P}^{\gamma}_{\alpha}$ -names for filters $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ such that

•
$$\mathbb{P}^{\delta}_{\alpha} \Vdash \dot{\mathcal{F}}^{\gamma}_{\alpha} \subseteq \dot{\mathcal{F}}^{\delta}_{\alpha}$$
 for $\gamma < \delta$

<ロト <同ト < 三ト < 三ト

Extending ultrafilters Matrix iterations Applications

Matrices: the general case

More generally, by recursion on $\alpha < \lambda$, build finite support iterations $(\mathbb{P}^{\gamma}_{\alpha} : \alpha \leq \lambda), \ \gamma \leq \mu$, such that (i) $\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$ for $\gamma < \delta$ (ii) $\mathbb{P}^{\mu}_{\alpha} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}^{\gamma}_{\alpha}$ (iii) $V^{\mu}_{\alpha} \cap \omega^{\omega} = \bigcup_{\gamma < \mu} V^{\gamma}_{\alpha} \cap \omega^{\omega}$ (iv) if $\beta = \alpha + 1$ is a successor, we have $\mathbb{P}^{\gamma}_{\alpha}$ -names for filters $\mathcal{F}^{\gamma}_{\alpha}$ such that • $\mathbb{P}^{\delta}_{\alpha} \Vdash \dot{\mathcal{F}}^{\gamma}_{\alpha} \subset \dot{\mathcal{F}}^{\delta}_{\alpha}$ for $\gamma < \delta$ • all maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}_{\alpha}^{\gamma}}$ in $V^{\mathbb{P}_{\alpha}^{\gamma}}$ are maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}^{\delta}}$ in $V^{\mathbb{P}^{\delta}_{\alpha}}$ where $\mathbb{X} = \mathbb{L}, \mathbb{M}$

Extending ultrafilters Matrix iterations Applications

Matrices: the general case

More generally, by recursion on $\alpha < \lambda$, build finite support iterations $(\mathbb{P}^{\gamma}_{\alpha} : \alpha \leq \lambda), \ \gamma \leq \mu$, such that (i) $\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$ for $\gamma < \delta$ (ii) $\mathbb{P}^{\mu}_{\alpha} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}^{\gamma}_{\alpha}$ (iii) $V^{\mu}_{\alpha} \cap \omega^{\omega} = \bigcup_{\gamma < \mu} V^{\gamma}_{\alpha} \cap \omega^{\omega}$ (iv) if $\beta = \alpha + 1$ is a successor, we have $\mathbb{P}^{\gamma}_{\alpha}$ -names for filters $\mathcal{F}^{\gamma}_{\alpha}$ such that • $\mathbb{P}^{\delta}_{\alpha} \Vdash \dot{\mathcal{F}}^{\gamma}_{\alpha} \subset \dot{\mathcal{F}}^{\delta}_{\alpha}$ for $\gamma < \delta$ \bullet all maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}^\gamma_\alpha}$ in $V^{\mathbb{P}^\gamma_\alpha}$ are maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}^{\delta}}$ in $V^{\mathbb{P}^{\delta}_{\alpha}}$ where $\mathbb{X} = \mathbb{L}, \mathbb{M}$ and we put $\mathbb{P}^{\gamma}_{\beta} = \mathbb{P}^{\gamma}_{\alpha} \star \mathbb{X}_{\dot{\mathcal{F}}^{\gamma}}$

Extending ultrafilters Matrix iterations Applications

Matrices: the general case

More generally, by recursion on $\alpha < \lambda$, build finite support iterations $(\mathbb{P}^{\gamma}_{\alpha} : \alpha \leq \lambda), \ \gamma \leq \mu$, such that (i) $\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$ for $\gamma < \delta$ (ii) $\mathbb{P}^{\mu}_{\alpha} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}^{\gamma}_{\alpha}$ (iii) $V^{\mu}_{\alpha} \cap \omega^{\omega} = \bigcup_{\gamma < \mu} V^{\gamma}_{\alpha} \cap \omega^{\omega}$ (iv) if $\beta = \alpha + 1$ is a successor, we have $\mathbb{P}^{\gamma}_{\alpha}$ -names for filters $\mathcal{F}^{\gamma}_{\alpha}$ such that • $\mathbb{P}^{\delta}_{\alpha} \Vdash \dot{\mathcal{F}}^{\gamma}_{\alpha} \subset \dot{\mathcal{F}}^{\delta}_{\alpha}$ for $\gamma < \delta$ • all maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}_{\alpha}^{\gamma}}$ in $V^{\mathbb{P}_{\alpha}^{\gamma}}$ are maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}^{\delta}}$ in $V^{\mathbb{P}^{\delta}_{\alpha}}$ where $\mathbb{X} = \mathbb{L}, \mathbb{M}$ and we put $\mathbb{P}^{\gamma}_{\beta} = \mathbb{P}^{\gamma}_{\alpha} \star \mathbb{X}_{\dot{\mathcal{F}}^{\gamma}}$ Successor step $\beta = \alpha + 1$: like $\beta = 1$ of previous slide.

Extending ultrafilters Matrix iterations Applications

Matrices: the general case

More generally, by recursion on $\alpha < \lambda$, build finite support iterations $(\mathbb{P}^{\gamma}_{\alpha} : \alpha \leq \lambda), \ \gamma \leq \mu$, such that (i) $\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$ for $\gamma < \delta$ (ii) $\mathbb{P}^{\mu}_{\alpha} = \lim \operatorname{dir}_{\gamma < \mu} \mathbb{P}^{\gamma}_{\alpha}$ (iii) $V^{\mu}_{\alpha} \cap \omega^{\omega} = \bigcup_{\gamma < \mu} V^{\gamma}_{\alpha} \cap \omega^{\omega}$ (iv) if $\beta = \alpha + 1$ is a successor, we have $\mathbb{P}^{\gamma}_{\alpha}$ -names for filters $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ such that • $\mathbb{P}^{\delta}_{\alpha} \Vdash \dot{\mathcal{F}}^{\gamma}_{\alpha} \subset \dot{\mathcal{F}}^{\delta}_{\alpha}$ for $\gamma < \delta$ • all maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}_{\alpha}^{\gamma}}$ in $V^{\mathbb{P}_{\alpha}^{\gamma}}$ are maximal antichains of $\mathbb{X}_{\dot{\mathcal{F}}^{\delta}}$ in $V^{\mathbb{P}^{\delta}_{\alpha}}$ where $\mathbb{X} = \mathbb{L}, \mathbb{M}$ and we put $\mathbb{P}^{\gamma}_{\beta} = \mathbb{P}^{\gamma}_{\alpha} \star \mathbb{X}_{\dot{\mathcal{F}}^{\gamma}}$ Successor step $\beta = \alpha + 1$: like $\beta = 1$ of previous slide. Limit step: (i), (ii), (iii): exercise! イロト イポト イヨト イヨト

Extending ultrafilters Matrix iterations Applications

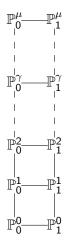
Matrices: a diagram

<ロ> <同> <同> < 同> < 同>

3

Extending ultrafilters Matrix iterations Applications

Matrices: a diagram

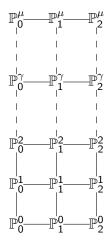


<ロ> <同> <同> < 同> < 同>

3

Extending ultrafilters Matrix iterations Applications

Matrices: a diagram

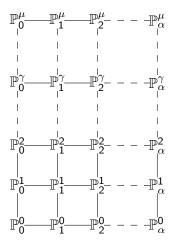


<ロ> <四> <四> <日> <日> <日> <日</p>

3

Extending ultrafilters Matrix iterations Applications

Matrices: a diagram

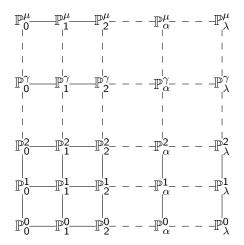


1≣ →

-

Extending ultrafilters Matrix iterations Applications

Matrices: a diagram



Э

-

Extending ultrafilters Matrix iterations Applications

- Lecture 1: Definability
 - Suslin ccc forcing
 - Iteration of definable forcing
 - Applications

2 Lecture 2: Matrices

- Extending ultrafilters
- Matrix iterations

Applications

- 3 Lecture 3: Ultrapowers
 - Ultrapowers of p.o.'s
 - Ultrapowers and iterations
 - Applications
- 4 Lecture 4: Witnesses
 - The problem
 - The construction

A (1) > A (2) > A

1

MQ (P

Extending ultrafilters Matrix iterations Applications

Dense sets of rationals

Let \mathbf{Q} denote the rationals. Dense(\mathbf{Q}): dense subsets of rationals. nwd: nowhere dense sets of rationals

イロト イポト イヨト イヨト

Extending ultrafilters Matrix iterations Applications

Dense sets of rationals

Let \mathbf{Q} denote the rationals. Dense(\mathbf{Q}): dense subsets of rationals. nwd: nowhere dense sets of rationals

For $A, B \in \text{Dense}(\mathbf{Q})$:

 $A \subseteq_{\text{nwd}} B$ (A is contained in $B \mod \text{nwd}$) $\iff A \setminus B \in \text{nwd}$

<ロト <同ト < ヨト < ヨト -

Extending ultrafilters Matrix iterations Applications

Dense sets of rationals

Let ${\bf Q}$ denote the rationals. Dense(${\bf Q})$: dense subsets of rationals. nwd: nowhere dense sets of rationals

For $A, B \in \text{Dense}(\mathbf{Q})$:

 $A \subseteq_{\mathrm{nwd}} B$ (A is contained in $B \mod \mathrm{nwd}$) $\iff A \setminus B \in \mathrm{nwd}$

Consider the quotient $Dense(\mathbf{Q})/nwd$ ordered by $[A] \leq [B]$ iff $A \subseteq_{nwd} B$.

Extending ultrafilters Matrix iterations Applications

Cardinal invariants for $Dense(\mathbf{Q})/nwd 1$

For $A, B \in \text{Dense}(\mathbf{Q})$:

A **Q**-splits $B \iff A \cap B$ and $B \setminus A$ both dense

Jörg Brendle Aspects of iterated forcing

イロト イポト イヨト イヨト

Extending ultrafilters Matrix iterations Applications

Cardinal invariants for $Dense(\mathbf{Q})/nwd 1$

For $A, B \in \text{Dense}(\mathbf{Q})$:

A **Q**-splits $B \iff A \cap B$ and $B \setminus A$ both dense

 $\mathcal{F} \subseteq \mathrm{Dense}(\mathbf{Q})$ is \mathbf{Q} -splitting if every member of $\mathrm{Dense}(\mathbf{Q})$ is \mathbf{Q} -split by a member of \mathcal{F} .

 $\mathcal{F} \subseteq \text{Dense}(\mathbf{Q})$ is \mathbf{Q} -unsplit (or \mathbf{Q} -unreaped) if no member of $\text{Dense}(\mathbf{Q})$ \mathbf{Q} -splits all members of \mathcal{F} , i.e.

 $\forall A \in \text{Dense}(\mathbf{Q}) \exists B \in \mathcal{F} \ (A \cap B \text{ not dense or } B \setminus A \text{ not dense}).$

・ロト ・回ト ・ヨト・

Extending ultrafilters Matrix iterations Applications

Cardinal invariants for $Dense(\mathbf{Q})/nwd 1$

For $A, B \in \text{Dense}(\mathbf{Q})$:

A **Q**-splits $B \iff A \cap B$ and $B \setminus A$ both dense

 $\mathcal{F} \subseteq \text{Dense}(\mathbf{Q})$ is \mathbf{Q} -splitting if every member of $\text{Dense}(\mathbf{Q})$ is \mathbf{Q} -split by a member of \mathcal{F} .

 $\mathcal{F} \subseteq \text{Dense}(\mathbf{Q})$ is **Q**-unsplit (or **Q**-unreaped) if no member of $\text{Dense}(\mathbf{Q})$ **Q**-splits all members of \mathcal{F} , i.e. $\forall A \in \text{Dense}(\mathbf{Q}) \exists B \in \mathcal{F} (A \cap B \text{ not dense or } B \setminus A \text{ not dense}).$

 $\mathfrak{s}_{\mathbf{Q}} := \min\{|\mathcal{F}| : \mathcal{F} \text{ is } \mathbf{Q}\text{-splitting}\}, \text{ the } \mathbf{Q}\text{-splitting number.}$ $\mathfrak{r}_{\mathbf{Q}} := \min\{|\mathcal{F}| : \mathcal{F} \text{ is } \mathbf{Q}\text{-unsplit}\}, \text{ the } \mathbf{Q}\text{-reaping number.}$

Extending ultrafilters Matrix iterations Applications

Cardinal invariants for $Dense(\mathbf{Q})/nwd 2$

$\mathcal{D} \subseteq \text{Dense}(\mathbf{Q}) \; \mathbf{Q}$ -dense: $\forall A \in \text{Dense}(\mathbf{Q}) \; \exists B \in \mathcal{D} \; (B \subseteq_{\text{nwd}} A)$

Jörg Brendle Aspects of iterated forcing

< ロ > < 同 > < 回 > < 回 > < 回 > <

Extending ultrafilters Matrix iterations Applications

Cardinal invariants for $Dense(\mathbf{Q})/nwd 2$

 $\mathcal{D} \subseteq \text{Dense}(\mathbf{Q}) \; \mathbf{Q}$ -dense: $\forall A \in \text{Dense}(\mathbf{Q}) \; \exists B \in \mathcal{D} \; (B \subseteq_{\text{nwd}} A)$

$$\begin{split} \mathfrak{h}_{\mathbf{Q}} &:= \min\{|\mathfrak{D}| : \text{all } \mathcal{D} \in \mathfrak{D} \text{ open } \mathbf{Q}\text{-dense and } \bigcap \mathfrak{D} = \emptyset\} \\ & \text{the } \mathbf{Q}\text{-distributivity number.} \end{split}$$

(日) (同) (三) (三)

Extending ultrafilters Matrix iterations Applications

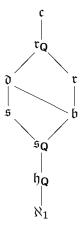
Cardinal invariants for $Dense(\mathbf{Q})/nwd 2$

 $\mathcal{D} \subseteq \text{Dense}(\mathbf{Q}) \; \mathbf{Q}\text{-dense: } \forall A \in \text{Dense}(\mathbf{Q}) \; \exists B \in \mathcal{D} \; (B \subseteq_{\text{nwd}} A)$ $\mathfrak{h}_{\mathbf{Q}} := \min\{|\mathfrak{D}| : \text{all } \mathcal{D} \in \mathfrak{D} \text{ open } \mathbf{Q}\text{-dense and } \bigcap \mathfrak{D} = \emptyset\}$ $\text{the } \mathbf{Q}\text{-distributivity number.}$

Let \mathcal{M} be the meager ideal.

Extending ultrafilters Matrix iterations Applications

ZFC-inequalities: another diagram



< □ > < □ > < □ > < Ξ > < Ξ >

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 1

Theorem (B.)

Let $\lambda = \lambda^{\omega}$ be regular uncountable. It is consistent that $\mathfrak{s}_{\mathbf{Q}} = \mathfrak{c} = \lambda$ and $\mathfrak{h}_{\mathbf{Q}} = \aleph_1$.

イロト イポト イヨト イヨト

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 1

Theorem (B.)

Let $\lambda = \lambda^{\omega}$ be regular uncountable. It is consistent that $\mathfrak{s}_{\mathbf{Q}} = \mathfrak{c} = \lambda$ and $\mathfrak{h}_{\mathbf{Q}} = \aleph_1$.

<u>Proof:</u> $\mathcal{F} \subseteq \text{Dense}(\mathbf{Q})$ is a maximal \mathbf{Q} -filter if \mathcal{F} is a filter in $\text{Dense}(\mathbf{Q})$ which cannot be extended to a strictly larger filter in $\text{Dense}(\mathbf{Q})$.

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 1

Theorem (B.)

Let $\lambda = \lambda^{\omega}$ be regular uncountable. It is consistent that $\mathfrak{s}_{\mathbf{Q}} = \mathfrak{c} = \lambda$ and $\mathfrak{h}_{\mathbf{Q}} = \aleph_1$.

<u>Proof:</u> $\mathcal{F} \subseteq \text{Dense}(\mathbf{Q})$ is a maximal \mathbf{Q} -filter if \mathcal{F} is a filter in $\text{Dense}(\mathbf{Q})$ which cannot be extended to a strictly larger filter in $\text{Dense}(\mathbf{Q})$.

<u>Fact:</u> If $N \subseteq M$, \mathcal{F} is a maximal **Q**-filter in M and \mathcal{G} is a maximal **Q**-filter in N extending \mathcal{F} , then every \mathcal{F} -positive set of M is \mathcal{G} -positive in N.

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 2

So we may apply preservation of maximal antichains for Laver forcing.

Lemma (preservation of maximal antichains)

The following are equivalent:

- (i) every \mathcal{F} -positive set in M is still \mathcal{G} -positive in N
- (ii) every maximal antichain of L_F in M is still a maximal antichain of L_G in N

<ロト <同ト < 国ト < 国ト

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 2

So we may apply preservation of maximal antichains for Laver forcing. This allows us to build a matrix iteration with $\mu = \aleph_1$, $\mathbb{X} = \mathbb{L}$ and the $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ being maximal **Q**-filters:

イロト イポト イヨト イヨト

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 2

So we may apply preservation of maximal antichains for Laver forcing. This allows us to build a matrix iteration with $\mu = \aleph_1$, $\mathbb{X} = \mathbb{L}$ and the $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ being maximal **Q**-filters:

(i) $\mathbb{P}_0^{\gamma} = \mathbb{C}^{\gamma}$ adds γ Cohen reals

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 2

So we may apply preservation of maximal antichains for Laver forcing. This allows us to build a matrix iteration with $\mu = \aleph_1$, $\mathbb{X} = \mathbb{L}$ and the $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ being maximal **Q**-filters:

(i)
$$\mathbb{P}_0^{\gamma} = \mathbb{C}^{\gamma}$$
 adds γ Cohen reals

(ii)
$$\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$$
 for $\gamma < \delta$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 2

So we may apply preservation of maximal antichains for Laver forcing. This allows us to build a matrix iteration with $\mu = \aleph_1$, $\mathbb{X} = \mathbb{L}$ and the $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ being maximal **Q**-filters:

(i)
$$\mathbb{P}_0^{\gamma} = \mathbb{C}^{\gamma}$$
 adds γ Cohen reals

(ii)
$$\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$$
 for $\gamma < \delta$

(iii)
$$\mathbb{P}_{\alpha}^{\aleph_1} = \lim \operatorname{dir}_{\gamma < \aleph_1} \mathbb{P}_{\alpha}^{\gamma}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 2

So we may apply preservation of maximal antichains for Laver forcing. This allows us to build a matrix iteration with $\mu = \aleph_1$, $\mathbb{X} = \mathbb{L}$ and the $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ being maximal **Q**-filters:

(i)
$$\mathbb{P}_{0}^{\gamma} = \mathbb{C}^{\gamma}$$
 adds γ Cohen reals
(ii) $\mathbb{P}_{\alpha}^{\gamma} < \circ \mathbb{P}_{\alpha}^{\delta}$ for $\gamma < \delta$
(iii) $\mathbb{P}_{\alpha}^{\aleph_{1}} = \lim \operatorname{dir}_{\gamma < \aleph_{1}} \mathbb{P}_{\alpha}^{\gamma}$
(iv) $V_{\alpha}^{\aleph_{1}} \cap \omega^{\omega} = \bigcup_{\gamma < \aleph_{1}} (V_{\alpha}^{\gamma} \cap \omega^{\omega})$ and $\omega^{\omega} \cap (V_{\alpha}^{\delta} \setminus V_{\alpha}^{\gamma}) \neq \emptyset$ for
 $\gamma < \delta$

イロト イポト イヨト イヨト

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 2

So we may apply preservation of maximal antichains for Laver forcing. This allows us to build a matrix iteration with $\mu = \aleph_1$, $\mathbb{X} = \mathbb{L}$ and the $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ being maximal **Q**-filters:

(i)
$$\mathbb{P}^{\gamma}_{\mathbf{0}} = \mathbb{C}^{\gamma}$$
 adds γ Cohen reals

(ii)
$$\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$$
 for $\gamma < \delta$

(iii)
$$\mathbb{P}_{\alpha}^{\aleph_1} = \lim \operatorname{dir}_{\gamma < \aleph_1} \mathbb{P}_{\alpha}^{\gamma}$$

(iv)
$$V_{\alpha}^{\aleph_1} \cap \omega^{\omega} = \bigcup_{\gamma < \aleph_1} (V_{\alpha}^{\gamma} \cap \omega^{\omega}) \text{ and } \omega^{\omega} \cap (V_{\alpha}^{\delta} \setminus V_{\alpha}^{\gamma}) \neq \emptyset \text{ for } \gamma < \delta$$

(v) if
$$\beta = \alpha + 1$$
 is a successor, we have $\mathbb{P}^{\gamma}_{\alpha}$ -names for maximal Q-filters $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ such that

イロト イポト イヨト イヨト

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 2

So we may apply preservation of maximal antichains for Laver forcing. This allows us to build a matrix iteration with $\mu = \aleph_1$, $\mathbb{X} = \mathbb{L}$ and the $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ being maximal **Q**-filters:

(i)
$$\mathbb{P}^{\gamma}_{\mathbf{0}}=\mathbb{C}^{\gamma}$$
 adds γ Cohen reals

(ii)
$$\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$$
 for $\gamma < \delta$

(iii)
$$\mathbb{P}_{\alpha}^{\aleph_1} = \lim \operatorname{dir}_{\gamma < \aleph_1} \mathbb{P}_{\alpha}^{\gamma}$$

(iv)
$$V_{\alpha}^{\aleph_1} \cap \omega^{\omega} = \bigcup_{\gamma < \aleph_1} (V_{\alpha}^{\gamma} \cap \omega^{\omega}) \text{ and } \omega^{\omega} \cap (V_{\alpha}^{\delta} \setminus V_{\alpha}^{\gamma}) \neq \emptyset \text{ for } \gamma < \delta$$

(v) if
$$\beta = \alpha + 1$$
 is a successor, we have $\mathbb{P}^{\gamma}_{\alpha}$ -names for maximal Q-filters $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ such that

•
$$\Vdash^{\delta}_{\alpha} \dot{\mathcal{F}}^{\gamma}_{\alpha} \subseteq \dot{\mathcal{F}}^{\delta}_{\alpha}$$
 for $\gamma < \delta$

イロト イポト イヨト イヨト

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 2

So we may apply preservation of maximal antichains for Laver forcing. This allows us to build a matrix iteration with $\mu = \aleph_1$, $\mathbb{X} = \mathbb{L}$ and the $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ being maximal **Q**-filters:

(i)
$$\mathbb{P}_0^{\gamma} = \mathbb{C}^{\gamma}$$
 adds γ Cohen reals

(ii)
$$\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$$
 for $\gamma < \delta$

(iii)
$$\mathbb{P}_{\alpha}^{\aleph_1} = \lim \operatorname{dir}_{\gamma < \aleph_1} \mathbb{P}_{\alpha}^{\gamma}$$

(iv)
$$V_{\alpha}^{\aleph_1} \cap \omega^{\omega} = \bigcup_{\gamma < \aleph_1} (V_{\alpha}^{\gamma} \cap \omega^{\omega}) \text{ and } \omega^{\omega} \cap (V_{\alpha}^{\delta} \setminus V_{\alpha}^{\gamma}) \neq \emptyset \text{ for } \gamma < \delta$$

(v) if $\beta = \alpha + 1$ is a successor, we have $\mathbb{P}^{\gamma}_{\alpha}$ -names for maximal Q-filters $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ such that

- $\bullet \ \Vdash^{\delta}_{\alpha} \dot{\mathcal{F}}^{\gamma}_{\alpha} \subseteq \dot{\mathcal{F}}^{\delta}_{\alpha} \text{ for } \gamma < \delta$
- all maximal antichains of $\mathbb{L}_{\dot{\mathcal{F}}^{\gamma}_{\alpha}}$ in $V^{\mathbb{P}^{\gamma}_{\alpha}}$ are maximal antichains of $\mathbb{L}_{\dot{\mathcal{F}}^{\delta}_{\alpha}}$ in $V^{\mathbb{P}^{\delta}_{\alpha}}$

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 2

So we may apply preservation of maximal antichains for Laver forcing. This allows us to build a matrix iteration with $\mu = \aleph_1$, $\mathbb{X} = \mathbb{L}$ and the $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ being maximal **Q**-filters:

(i)
$$\mathbb{P}_0^{\gamma} = \mathbb{C}^{\gamma}$$
 adds γ Cohen reals

(ii)
$$\mathbb{P}^{\gamma}_{\alpha} < \circ \mathbb{P}^{\delta}_{\alpha}$$
 for $\gamma < \delta$

(iii)
$$\mathbb{P}_{\alpha}^{\aleph_1} = \lim \operatorname{dir}_{\gamma < \aleph_1} \mathbb{P}_{\alpha}^{\gamma}$$

(iv)
$$V_{\alpha}^{\aleph_1} \cap \omega^{\omega} = \bigcup_{\gamma < \aleph_1} (V_{\alpha}^{\gamma} \cap \omega^{\omega}) \text{ and } \omega^{\omega} \cap (V_{\alpha}^{\delta} \setminus V_{\alpha}^{\gamma}) \neq \emptyset \text{ for } \gamma < \delta$$

- (v) if $\beta = \alpha + 1$ is a successor, we have $\mathbb{P}^{\gamma}_{\alpha}$ -names for maximal **Q**-filters $\dot{\mathcal{F}}^{\gamma}_{\alpha}$ such that
 - $\Vdash^{\delta}_{\alpha} \dot{\mathcal{F}}^{\gamma}_{\alpha} \subseteq \dot{\mathcal{F}}^{\delta}_{\alpha}$ for $\gamma < \delta$
 - all maximal antichains of $\mathbb{L}_{\dot{\mathcal{F}}^{\gamma}_{\alpha}}$ in $V^{\mathbb{P}^{\gamma}_{\alpha}}$ are maximal antichains

of
$$\mathbb{L}_{\dot{\mathcal{F}}^{\delta}_{lpha}}$$
 in $V^{\mathbb{P}^{\delta}_{lpha}}$

and we put $\mathbb{P}_{\beta}^{\gamma} = \mathbb{P}_{\alpha}^{\gamma} \star \mathbb{L}_{\dot{\mathcal{F}}_{\alpha}^{\gamma}}$

・ロト ・回ト ・ヨト ・ヨト

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 3

<u>Fact:</u> Let \mathcal{F} be a maximal **Q**-filter. If ℓ is $\mathbb{L}_{\mathcal{F}}$ -generic over V, $\operatorname{ran}(\ell)$ is not **Q**-split by any ground model dense set.

(日) (同) (三) (三)

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 3

<u>Fact:</u> Let \mathcal{F} be a maximal **Q**-filter. If ℓ is $\mathbb{L}_{\mathcal{F}}$ -generic over V, $\operatorname{ran}(\ell)$ is not **Q**-split by any ground model dense set.

Since we iterate λ times, $\mathfrak{s}_{\mathbf{Q}} = \mathfrak{c} = \lambda$.

イロト イポト イヨト イヨト

MQ (P

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 3

<u>Fact:</u> Let \mathcal{F} be a maximal **Q**-filter. If ℓ is $\mathbb{L}_{\mathcal{F}}$ -generic over V, $ran(\ell)$ is not **Q**-split by any ground model dense set.

Since we iterate λ times, $\mathfrak{s}_{\mathbf{Q}} = \mathfrak{c} = \lambda$.

Lemma

Let κ be an uncountable cardinal. Assume there is an increasing chain of ZFC-models V_{α} , $\alpha < \kappa$, such that

(i) $\omega^{\omega} \cap V = \bigcup_{\alpha < \kappa} (\omega^{\omega} \cap V_{\alpha})$ (ii) $\omega^{\omega} \cap (V_{\alpha+1} \setminus V_{\alpha}) \neq \emptyset$ for all $\alpha < \kappa$. Then $\mathfrak{h}_{\mathbf{Q}} \leq \kappa$.

Extending ultrafilters Matrix iterations Applications

First application: $\mathfrak{h}_{\mathbf{Q}}$ versus $\mathfrak{s}_{\mathbf{Q}}$ 3

<u>Fact:</u> Let \mathcal{F} be a maximal **Q**-filter. If ℓ is $\mathbb{L}_{\mathcal{F}}$ -generic over V, $\operatorname{ran}(\ell)$ is not **Q**-split by any ground model dense set.

Since we iterate λ times, $\mathfrak{s}_{\mathbf{Q}} = \mathfrak{c} = \lambda$.

Lemma

Let κ be an uncountable cardinal. Assume there is an increasing chain of ZFC-models V_{α} , $\alpha < \kappa$, such that

(i) $\omega^{\omega} \cap V = \bigcup_{\alpha < \kappa} (\omega^{\omega} \cap V_{\alpha})$ (ii) $\omega^{\omega} \cap (V_{\alpha+1} \setminus V_{\alpha}) \neq \emptyset$ for all $\alpha < \kappa$. Then $\mathfrak{h}_{\mathbf{Q}} \leq \kappa$.

By (iv): true with $\kappa = \aleph_1$, $V = V_{\lambda}^{\aleph_1}$ and $V_{\alpha} = V_{\lambda}^{\alpha}$. Hence: $\mathfrak{h}_{\mathbf{Q}} = \aleph_1$. \Box

Extending ultrafilters Matrix iterations Applications

Second application: b versus s

Theorem (Blass-Shelah)

Let $\lambda = \lambda^{\omega}$ be regular uncountable. It is consistent that $\mathfrak{s} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \aleph_1$.

(日) (同) (三) (三)

Extending ultrafilters Matrix iterations Applications

Second application: b versus s

Theorem (Blass-Shelah)

Let $\lambda = \lambda^{\omega}$ be regular uncountable. It is consistent that $\mathfrak{s} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \aleph_1$.

Use a matrix iteration with $\mu = \aleph_1$, $\mathbb{X} = \mathbb{M}$ and the $\dot{\mathcal{U}}^{\gamma}_{\alpha}$ being ultrafilters. Recall:

Lemma (Blass-Shelah)

Let \mathcal{U} be an ultrafilter in M.

Also assume there is $c \in \omega^{\omega} \cap N$ unbounded over M.

Then there is an ultrafilter $\mathcal{V} \supseteq \mathcal{U}$ in N such that:

- (i) every maximal antichain of $\mathbb{M}_{\mathcal{U}}$ in M is still a maximal antichain of $\mathbb{M}_{\mathcal{V}}$ in N
- (ii) c is unbounded over $M^{\mathbb{M}_{\mathcal{U}}}$ in $N^{\mathbb{M}_{\mathcal{V}}}$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

- Lecture 1: Definability
 - Suslin ccc forcing
 - Iteration of definable forcing
 - Applications
- 2 Lecture 2: Matrices
 - Extending ultrafilters
 - Matrix iterations
 - Applications
- 3 Lecture 3: Ultrapowers
 - Ultrapowers of p.o.'s
 - Ultrapowers and iterations
 - Applications
- 4 Lecture 4: Witnesses
 - The problem
 - The construction

< 17 ▶

→ Ξ → → Ξ

MQ (P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers of p.o.'s

- κ : measurable cardinal
- $\mathcal{D}:\ \kappa\text{-complete ultrafilter on }\kappa$

イロト イポト イヨト イヨト

DQ P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers of p.o.'s

- κ : measurable cardinal
- \mathcal{D} : κ -complete ultrafilter on κ

Let $\mathbb P$ be a p.o. and consider the ultrapower

 $\mathbb{P}^{\kappa}/\mathcal{D} = \{[f]: f: \kappa \to \mathbb{P}\}$

where $[f] = \{g \in \mathbb{P}^{\kappa} : \{\alpha < \kappa : f(\alpha) = g(\alpha)\} \in \mathcal{D}\}$ is the equivalence class of f.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers of p.o.'s

- κ : measurable cardinal
- $\mathcal{D}:\ \kappa\text{-complete ultrafilter on }\kappa$

Let $\mathbb P$ be a p.o. and consider the ultrapower

 $\mathbb{P}^{\kappa}/\mathcal{D} = \{[f]: f: \kappa \to \mathbb{P}\}$

where $[f] = \{g \in \mathbb{P}^{\kappa} : \{\alpha < \kappa : f(\alpha) = g(\alpha)\} \in \mathcal{D}\}$ is the equivalence class of f.

 $\mathbb{P}^{\kappa}/\mathcal{D}$ is ordered by

$$[g] \leq [f] \text{ if } \{\alpha < \kappa : g(\alpha) \leq f(\alpha)\} \in \mathcal{D}$$

Identifying $p \in \mathbb{P}$ with the class [f] of the constant function $f(\alpha) = p$ for all α , we may assume $\mathbb{P} \subseteq \mathbb{P}^{\kappa}/\mathcal{D}$.

< ロ > < 同 > < 回 > < 回 > .

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Complete embeddability

Lemma (Complete embeddability)

Let $A \subseteq \mathbb{P}$ be a maximal antichain. Then A is maximal in $\mathbb{P}^{\kappa}/\mathcal{D}$ iff $|A| < \kappa$. In particular, $\mathbb{P} < \circ \mathbb{P}^{\kappa}/\mathcal{D}$ iff \mathbb{P} has the κ -cc.

<ロト <同ト < 三ト < 三ト

MQ (P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Complete embeddability

Lemma (Complete embeddability)

Let $A \subseteq \mathbb{P}$ be a maximal antichain. Then A is maximal in $\mathbb{P}^{\kappa}/\mathcal{D}$ iff $|A| < \kappa$. In particular, $\mathbb{P} < \circ \mathbb{P}^{\kappa}/\mathcal{D}$ iff \mathbb{P} has the κ -cc.

<u>Proof</u>: A: an antichain of \mathbb{P} of size at least κ .

f: any injection from κ into A.

Then: [f] is incompatible with all members of A.

<ロト <同ト < 国ト < 国ト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Complete embeddability

Lemma (Complete embeddability)

Let $A \subseteq \mathbb{P}$ be a maximal antichain. Then A is maximal in $\mathbb{P}^{\kappa}/\mathcal{D}$ iff $|A| < \kappa$. In particular, $\mathbb{P} < \circ \mathbb{P}^{\kappa}/\mathcal{D}$ iff \mathbb{P} has the κ -cc.

<u>Proof:</u> A: an antichain of \mathbb{P} of size at least κ . f: any injection from κ into A. Then: [f] is incompatible with all members of A.

Let A be an antichain of \mathbb{P} of size $< \kappa$. Assume $[f] \in \mathbb{P}^{\kappa}/\mathcal{D}$ is incompatible with all members of A. For $p \in A$: $X_p := \{\alpha : f(\alpha) \text{ and } p \text{ are incompatible}\} \in \mathcal{D}$.

< □ > < □ > < □ > < □ > < □ >

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Complete embeddability

Lemma (Complete embeddability)

Let $A \subseteq \mathbb{P}$ be a maximal antichain. Then A is maximal in $\mathbb{P}^{\kappa}/\mathcal{D}$ iff $|A| < \kappa$. In particular, $\mathbb{P} < \circ \mathbb{P}^{\kappa}/\mathcal{D}$ iff \mathbb{P} has the κ -cc.

<u>Proof</u>: A: an antichain of \mathbb{P} of size at least κ . f: any injection from κ into A. Then: [f] is incompatible with all members of A.

Let *A* be an antichain of \mathbb{P} of size $< \kappa$. Assume $[f] \in \mathbb{P}^{\kappa}/\mathcal{D}$ is incompatible with all members of *A*. For $p \in A$: $X_p := \{\alpha : f(\alpha) \text{ and } p \text{ are incompatible}\} \in \mathcal{D}$. κ -completeness: $X := \bigcap_{p \in A} X_p \in \mathcal{D}$. If $\alpha \in X$: $f(\alpha)$ is incompatible with all $p \in A$. \Box

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Preservation of chain condition

Lemma (Preservation of the chain condition)

Assume \mathbb{P} has the λ -cc for some $\lambda < \kappa$. Then $\mathbb{P}^{\kappa}/\mathcal{D}$ has the λ -cc as well.

イロト イポト イヨト イヨト

MQ (P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Preservation of chain condition

Lemma (Preservation of the chain condition)

Assume \mathbb{P} has the λ -cc for some $\lambda < \kappa$. Then $\mathbb{P}^{\kappa}/\mathcal{D}$ has the λ -cc as well.

<u>Proof:</u> Assume $[f_{\gamma}]$, $\gamma < \lambda$, pairwise incompatible in $\mathbb{P}^{\kappa}/\mathcal{D}$. For $\gamma, \delta < \lambda$: $Y_{\gamma,\delta} := \{\alpha : f_{\gamma}(\alpha) \text{ and } f_{\delta}(\alpha) \text{ are incompatible}\} \in \mathcal{D}$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Preservation of chain condition

Lemma (Preservation of the chain condition)

Assume \mathbb{P} has the λ -cc for some $\lambda < \kappa$. Then $\mathbb{P}^{\kappa}/\mathcal{D}$ has the λ -cc as well.

<u>Proof:</u> Assume $[f_{\gamma}]$, $\gamma < \lambda$, pairwise incompatible in $\mathbb{P}^{\kappa}/\mathcal{D}$. For $\gamma, \delta < \lambda$: $Y_{\gamma,\delta} := \{\alpha : f_{\gamma}(\alpha) \text{ and } f_{\delta}(\alpha) \text{ are incompatible}\} \in \mathcal{D}$. κ -completeness: $Y := \bigcap_{\gamma,\delta} Y_{\gamma,\delta} \in \mathcal{D}$. If $\alpha \in Y$: $f_{\gamma}(\alpha)$, $\gamma < \lambda$, is an antichain in \mathbb{P} . Contradiction to the λ -cc. \Box

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Preservation of chain condition

Lemma (Preservation of the chain condition)

Assume \mathbb{P} has the λ -cc for some $\lambda < \kappa$. Then $\mathbb{P}^{\kappa}/\mathcal{D}$ has the λ -cc as well.

<u>Proof:</u> Assume $[f_{\gamma}]$, $\gamma < \lambda$, pairwise incompatible in $\mathbb{P}^{\kappa}/\mathcal{D}$. For $\gamma, \delta < \lambda$: $Y_{\gamma,\delta} := \{\alpha : f_{\gamma}(\alpha) \text{ and } f_{\delta}(\alpha) \text{ are incompatible}\} \in \mathcal{D}$. κ -completeness: $Y := \bigcap_{\gamma,\delta} Y_{\gamma,\delta} \in \mathcal{D}$. If $\alpha \in Y$: $f_{\gamma}(\alpha)$, $\gamma < \lambda$, is an antichain in \mathbb{P} . Contradiction to the λ -cc. \Box

<u>Remark:</u> If \mathbb{P} has the κ -cc but not the λ -cc for any $\lambda < \kappa$, then $\mathbb{P}^{\kappa}/\mathcal{D}$ does not have the κ -cc.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Antichains and names for reals 1

Assume $\mathbb P$ is ccc. Since $\mathbb P$ completely embeds into $\mathbb P^\kappa/\mathcal D$, we may write

$$\mathbb{P}^{\kappa}/\mathcal{D} = \mathbb{P} \star \dot{\mathbb{Q}}.$$

What can we say about the remainder forcing $\hat{\mathbb{Q}}$? E.g., what kind of reals can it add?

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Antichains and names for reals 1

Assume $\mathbb P$ is ccc. Since $\mathbb P$ completely embeds into $\mathbb P^\kappa/\mathcal D$, we may write

$$\mathbb{P}^{\kappa}/\mathcal{D} = \mathbb{P} \star \dot{\mathbb{Q}}.$$

What can we say about the remainder forcing $\hat{\mathbb{Q}}$? E.g., what kind of reals can it add?

Assume $\{[f_n] : n \in \omega\}$ is a maximal antichain in $\mathbb{P}^{\kappa}/\mathcal{D}$. Know: $\{\alpha : \{f_n(\alpha) : n \in \omega\}$ is a maximal antichain $\} \in \mathcal{D}$. Thus, by changing the f_n on a small set, we may as well assume that for all α , the $f_n(\alpha)$ form a maximal antichain in \mathbb{P} .

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Antichains and names for reals 2

A \mathbb{P} -name for a real \dot{x} is represented by sequences of maximal antichains $\{p_{n,i} : n \in \omega\}$ and of numbers $\{k_{n,i} : n \in \omega\}$, $i \in \omega$, such that

$$p_{n,i} \Vdash_{\mathbb{P}} \dot{x}(i) = k_{n,i}$$

<ロト <同ト < 三ト < 三ト

MQ (P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Antichains and names for reals 2

A \mathbb{P} -name for a real \dot{x} is represented by sequences of maximal antichains $\{p_{n,i} : n \in \omega\}$ and of numbers $\{k_{n,i} : n \in \omega\}$, $i \in \omega$, such that

$$p_{n,i} \Vdash_{\mathbb{P}} \dot{x}(i) = k_{n,i}$$

Therefore: a $\mathbb{P}^{\kappa}/\mathcal{D}$ -name \dot{y} for a real is represented by sequences $\{[f_{n,i}]: n \in \omega\}$ and $\{k_{n,i}: n \in \omega\}$, $i \in \omega$, such that the $\{f_{n,i}(\alpha): n \in \omega\}$, $i \in \omega$, form maximal antichains in \mathbb{P} for all α and $[f_{n,i}] \Vdash_{\mathbb{P}^{\kappa}/\mathcal{D}} \dot{y}(i) = k_{n,i}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Antichains and names for reals 2

A \mathbb{P} -name for a real \dot{x} is represented by sequences of maximal antichains $\{p_{n,i} : n \in \omega\}$ and of numbers $\{k_{n,i} : n \in \omega\}$, $i \in \omega$, such that

$$p_{n,i}\Vdash_{\mathbb{P}}\dot{x}(i)=k_{n,i}$$

Therefore: a $\mathbb{P}^{\kappa}/\mathcal{D}$ -name \dot{y} for a real is represented by sequences $\{[f_{n,i}]: n \in \omega\}$ and $\{k_{n,i}: n \in \omega\}$, $i \in \omega$, such that the $\{f_{n,i}(\alpha): n \in \omega\}$, $i \in \omega$, form maximal antichains in \mathbb{P} for all α and

$$[f_{n,i}] \Vdash_{\mathbb{P}^{\kappa}/\mathcal{D}} \dot{y}(i) = k_{n,i}$$

The $\{f_{n,i}(\alpha) : n \in \omega\}$ and $\{k_{n,i} : n \in \omega\}$, $i \in \omega$, determine a \mathbb{P} -name \dot{y}_{α} for a real given by

$$f_{n,i}(\alpha) \Vdash_{\mathbb{P}} \dot{y}_{\alpha}(i) = k_{n,i}$$

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Antichains and names for reals 2

A \mathbb{P} -name for a real \dot{x} is represented by sequences of maximal antichains $\{p_{n,i} : n \in \omega\}$ and of numbers $\{k_{n,i} : n \in \omega\}$, $i \in \omega$, such that

$$p_{n,i}\Vdash_{\mathbb{P}}\dot{x}(i)=k_{n,i}$$

Therefore: a $\mathbb{P}^{\kappa}/\mathcal{D}$ -name \dot{y} for a real is represented by sequences $\{[f_{n,i}]: n \in \omega\}$ and $\{k_{n,i}: n \in \omega\}$, $i \in \omega$, such that the $\{f_{n,i}(\alpha): n \in \omega\}$, $i \in \omega$, form maximal antichains in \mathbb{P} for all α and

$$[f_{n,i}]\Vdash_{\mathbb{P}^{\kappa}/\mathcal{D}} \dot{y}(i) = k_{n,i}$$

The $\{f_{n,i}(\alpha) : n \in \omega\}$ and $\{k_{n,i} : n \in \omega\}$, $i \in \omega$, determine a \mathbb{P} -name \dot{y}_{α} for a real given by

$$f_{n,i}(\alpha) \Vdash_{\mathbb{P}} \dot{y}_{\alpha}(i) = k_{n,i}$$

Think of \dot{y} as the *mean* or *average* of the \dot{y}_{α} and write $\dot{y} = (\dot{y}_{\alpha} : \alpha < \kappa) / \mathcal{D}.$

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and eventual dominance 1

Lemma (ultrapowers and eventual dominance)

(i)
$$\mathbb{P} \Vdash$$
 " $\mathfrak{b} = \mathfrak{d} = \kappa$ iff $\dot{\mathbb{Q}}$ adds a dominating real".

(ii) If $\mathbb{P} \Vdash \mathfrak{b} > \kappa$ or $\mathbb{P} \Vdash \mathfrak{d} < \kappa$, then $\mathbb{P} \Vdash ``\hat{\mathbb{Q}}$ is ω^{ω} -bounding''.

イロト イポト イヨト イヨト

MQ (P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and eventual dominance 1

Lemma (ultrapowers and eventual dominance)

(i)
$$\mathbb{P} \Vdash$$
 " $\mathfrak{b} = \mathfrak{d} = \kappa$ iff $\dot{\mathbb{Q}}$ adds a dominating real".

(ii) If $\mathbb{P} \Vdash \mathfrak{b} > \kappa$ or $\mathbb{P} \Vdash \mathfrak{d} < \kappa$, then $\mathbb{P} \Vdash ``\hat{\mathbb{Q}}$ is ω^{ω} -bounding''.

 $\begin{array}{l} \underline{\text{Proof:}} \ (\text{i}) \ \text{Assume} \ p \Vdash_{\mathbb{P}} ``\{\dot{x}_{\alpha} : \alpha < \kappa\} \ \text{is a scale''} .\\ \\ \text{Put} \ \dot{x} = (\dot{x}_{\alpha} : \alpha < \kappa) / \mathcal{D}.\\ \\ \text{Clearly} \ p \Vdash_{\mathbb{P}\star\dot{\mathbb{Q}}} \dot{x} \geq^* \dot{x}_{\alpha} \ \text{for all} \ \alpha. \end{array}$

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and eventual dominance 1

Lemma (ultrapowers and eventual dominance)

(i)
$$\mathbb{P} \Vdash$$
 " $\mathfrak{b} = \mathfrak{d} = \kappa$ iff $\dot{\mathbb{Q}}$ adds a dominating real".

(ii) If $\mathbb{P} \Vdash \mathfrak{b} > \kappa$ or $\mathbb{P} \Vdash \mathfrak{d} < \kappa$, then $\mathbb{P} \Vdash ``\dot{\mathbb{Q}}$ is ω^{ω} -bounding''.

$$\begin{array}{l} \underline{\text{Proof:}}\\ \text{Pot}\ \dot{x} = (\dot{x}_{\alpha} : \alpha < \kappa) / \mathcal{D}.\\ \text{Put}\ \dot{x} = (\dot{x}_{\alpha} : \alpha < \kappa) / \mathcal{D}.\\ \text{Clearly}\ p \Vdash_{\mathbb{P}\star\dot{\mathbb{Q}}} \dot{x} \geq^{*} \dot{x}_{\alpha} \text{ for all } \alpha. \end{array}$$

Converse: exercise!

<ロト <同ト < 三ト < 三ト

MQ (P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and eventual dominance 1

Lemma (ultrapowers and eventual dominance)

(i)
$$\mathbb{P} \Vdash$$
 " $\mathfrak{b} = \mathfrak{d} = \kappa$ iff $\dot{\mathbb{Q}}$ adds a dominating real".

(ii) If $\mathbb{P} \Vdash \mathfrak{b} > \kappa$ or $\mathbb{P} \Vdash \mathfrak{d} < \kappa$, then $\mathbb{P} \Vdash ``\dot{\mathbb{Q}}$ is ω^{ω} -bounding''.

$$\begin{array}{l} \underline{\text{Proof:}}\\ \hline \text{Piroof:} (\text{i}) \text{ Assume } p \Vdash_{\mathbb{P}} ``\{\dot{x}_{\alpha} : \alpha < \kappa\} \text{ is a scale''}.\\ \hline \text{Put } \dot{x} = (\dot{x}_{\alpha} : \alpha < \kappa) / \mathcal{D}.\\ \hline \text{Clearly } p \Vdash_{\mathbb{P}\star\dot{\mathbb{Q}}} \dot{x} \geq^* \dot{x}_{\alpha} \text{ for all } \alpha. \end{array}$$

Converse: exercise!

(ii) Assume that $p \Vdash_{\mathbb{P}} \mathfrak{b} > \kappa$. Let $\dot{y} = (\dot{y}_{\alpha} : \alpha < \kappa) / \mathcal{D}$ be a $\mathbb{P}^{\kappa} / \mathcal{D}$ -name for a real. The \dot{y}_{α} are forced to be bounded, say, by \dot{x} . But then $p \Vdash_{\mathbb{P} \star \dot{\mathbb{Q}}} \dot{y} \leq^* \dot{x}$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and eventual dominance 2

Assume that for some $\mu < \kappa$, $p \Vdash_{\mathbb{P}} \mathfrak{d} = \mu$. Say: $p \Vdash_{\mathbb{P}} ``\{\dot{x}_{\alpha} : \alpha < \mu\}$ is dominating". Then: $p \Vdash_{\mathbb{P}} ``\{\dot{x}_{\alpha} : \alpha < \mu\}$ is dominating". \Box

<ロト <同ト < 三ト < 三ト

MQ (P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and eventual dominance 2

Assume that for some
$$\mu < \kappa$$
, $p \Vdash_{\mathbb{P}} \mathfrak{d} = \mu$.
Say: $p \Vdash_{\mathbb{P}} "\{\dot{x}_{\alpha} : \alpha < \mu\}$ is dominating".
Then: $p \Vdash_{\mathbb{P}} "\{\dot{x}_{\alpha} : \alpha < \mu\}$ is dominating". \Box

Problem

Give an exact characterization of when $\dot{\mathbb{Q}}$ is forced to be $\omega^{\omega}\text{-bounding.}$

イロト イポト イヨト イヨト

DQ P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and eventual dominance 2

Assume that for some
$$\mu < \kappa$$
, $p \Vdash_{\mathbb{P}} \mathfrak{d} = \mu$.
Say: $p \Vdash_{\mathbb{P}} ``{\dot{x}_{\alpha} : \alpha < \mu}$ is dominating".
Then: $p \Vdash_{\mathbb{P}} ``{\dot{x}_{\alpha} : \alpha < \mu}$ is dominating".

Problem

Give an exact characterization of when $\hat{\mathbb{Q}}$ is forced to be ω^{ω} -bounding.

<u>Main point</u>: If $\mu > \kappa$ regular, and \mathbb{P} forces $\mathfrak{b} = \mathfrak{d} = \mu$, this is preserved by taking ultrapowers.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

- (i) Let $\mu > \kappa$ regular. Assume $\mathbb{P} \Vdash ``A_{\gamma}, \gamma < \mu$, is \subseteq^* -decreasing and generates an ultrafilter". Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``A_{\gamma}, \gamma < \mu$, still generates an ultrafilter".
- (ii) Assume $\mathbb{P} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, satisfy $\dot{A}_{\gamma} \not\subseteq ^{*} \dot{A}_{\delta}$ for $\gamma < \delta''$. Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, does not generate an ultrafilter''.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

- (i) Let $\mu > \kappa$ regular. Assume $\mathbb{P} \Vdash ``\dot{A}_{\gamma}, \gamma < \mu$, is \subseteq *-decreasing and generates an ultrafilter". Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{A}_{\gamma}, \gamma < \mu$, still generates an ultrafilter".
- (ii) Assume $\mathbb{P} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, satisfy $\dot{A}_{\gamma} \not\subseteq^* \dot{A}_{\delta}$ for $\gamma < \delta''$. Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, does not generate an ultrafilter".

<u>Proof:</u> (i) $\dot{B} = (\dot{B}_{\alpha} : \alpha < \kappa)/\mathcal{D}$: $\mathbb{P}^{\kappa}/\mathcal{D}$ -name for a subset of ω . By ccc: for each α , find $\gamma = \gamma_{\alpha}$ such that

$$\mathbb{P} \Vdash ``\dot{A}_{\gamma} \subseteq^{*} \dot{B}_{\alpha} \text{ or } \dot{A}_{\gamma} \subseteq^{*} \omega \setminus \dot{B}_{\alpha}".$$
 (*)

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

- (i) Let $\mu > \kappa$ regular. Assume $\mathbb{P} \Vdash ``\dot{A}_{\gamma}, \gamma < \mu$, is \subseteq *-decreasing and generates an ultrafilter". Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{A}_{\gamma}, \gamma < \mu$, still generates an ultrafilter".
- (ii) Assume $\mathbb{P} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, satisfy $\dot{A}_{\gamma} \not\subseteq^* \dot{A}_{\delta}$ for $\gamma < \delta''$. Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, does not generate an ultrafilter".

<u>Proof:</u> (i) $\dot{B} = (\dot{B}_{\alpha} : \alpha < \kappa)/\mathcal{D}$: $\mathbb{P}^{\kappa}/\mathcal{D}$ -name for a subset of ω . By ccc: for each α , find $\gamma = \gamma_{\alpha}$ such that

$$\mathbb{P} \Vdash ``\dot{A}_{\gamma} \subseteq ``\dot{B}_{lpha} ext{ or } \dot{A}_{\gamma} \subseteq ``\omega \setminus \dot{B}_{lpha}". (*)$$

Let $\gamma = sup_{\alpha}\gamma_{\alpha}$. Then (*) holds for all α . Hence:

$$\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{A}_{\gamma} \subseteq^{*} \dot{B} \text{ or } \dot{A}_{\gamma} \subseteq^{*} \omega \setminus \dot{B}''.$$

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

- (i) Let $\mu > \kappa$ regular. Assume $\mathbb{P} \Vdash ``A_{\gamma}, \gamma < \mu$, is \subseteq *-decreasing and generates an ultrafilter". Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``A_{\gamma}, \gamma < \mu$, still generates an ultrafilter".
- (ii) Assume $\mathbb{P} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, satisfy $\dot{A}_{\gamma} \not\subseteq^* \dot{A}_{\delta}$ for $\gamma < \delta''$. Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, does not generate an ultrafilter".

<u>Proof:</u> (i) $\dot{B} = (\dot{B}_{\alpha} : \alpha < \kappa)/\mathcal{D}$: $\mathbb{P}^{\kappa}/\mathcal{D}$ -name for a subset of ω . By ccc: for each α , find $\gamma = \gamma_{\alpha}$ such that

$$\mathbb{P} \Vdash ``\dot{A}_{\gamma} \subseteq^* \dot{B}_{lpha} ext{ or } \dot{A}_{\gamma} \subseteq^* \omega \setminus \dot{B}_{lpha}".$$
 (*)

Let $\gamma = sup_{\alpha}\gamma_{\alpha}$. Then (*) holds for all α . Hence:

$$\mathbb{P}^{\kappa}/\mathcal{D}\Vdash ``\dot{A}_{\gamma}\subseteq^{*}\dot{B} \text{ or } \dot{A}_{\gamma}\subseteq^{*}\omega\setminus \dot{B}''$$

(ii) Exercise! (Consider $\dot{A} = (\dot{A}_{\alpha} : \alpha < \kappa)/\mathcal{D}$.) In the set of th

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

- (i) Let $\mu > \kappa$ regular. Assume $\mathbb{P} \Vdash ``A_{\gamma}, \gamma < \mu$, is \subseteq^* -decreasing and generates an ultrafilter". Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``A_{\gamma}, \gamma < \mu$, still generates an ultrafilter".
- (ii) Assume $\mathbb{P} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, satisfy $\dot{A}_{\gamma} \not\subseteq ``\dot{A}_{\delta}$ for $\gamma < \delta''$. Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, does not generate an ultrafilter''.

<u>Main points</u>: (i) If $\mu > \kappa$ regular, and \mathbb{P} forces an ultrafilter generated by a decreasing chain of length μ , this is preserved by taking ultrapowers.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and ultrafilters

Lemma (ultrapowers and ultrafilters)

- (i) Let $\mu > \kappa$ regular. Assume $\mathbb{P} \Vdash ``A_{\gamma}, \gamma < \mu$, is \subseteq^* -decreasing and generates an ultrafilter". Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``A_{\gamma}, \gamma < \mu$, still generates an ultrafilter".
- (ii) Assume $\mathbb{P} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, satisfy $\dot{A}_{\gamma} \not\subseteq ``\dot{A}_{\delta}$ for $\gamma < \delta''$. Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{A}_{\gamma}, \gamma < \kappa$, does not generate an ultrafilter''.

<u>Main points</u>: (i) If $\mu > \kappa$ regular, and \mathbb{P} forces an ultrafilter generated by a decreasing chain of length μ , this is preserved by taking ultrapowers.

(ii) Taking ultrapowers kills ultrafilter bases of size κ .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and mad families

Lemma (ultrapowers and mad families)

Assume $\mathbb{P} \Vdash ``\dot{A}$ is an a.d. family of size $\geq \kappa$ ''. Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{A}$ is not maximal''. In particular, if \mathbb{P} forces $\mathfrak{a} \geq \kappa$, then no a.d. family of $V^{\mathbb{P}}$ is maximal in $V^{\mathbb{P}^{\kappa}/\mathcal{D}}$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and mad families

Lemma (ultrapowers and mad families)

Assume $\mathbb{P} \Vdash ``\dot{\mathcal{A}}$ is an a.d. family of size $\geq \kappa$ ''. Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{\mathcal{A}}$ is not maximal''. In particular, if \mathbb{P} forces $\mathfrak{a} \geq \kappa$, then no a.d. family of $V^{\mathbb{P}}$ is maximal in $V^{\mathbb{P}^{\kappa}/\mathcal{D}}$.

<u>Proof:</u> Let $\mu \ge \kappa$. Let $\dot{\mathcal{A}} = {\dot{\mathcal{A}}_{\gamma} : \gamma < \mu}$ be a \mathbb{P} -name for an a.d. family. Consider $\dot{\mathcal{A}} = (\dot{\mathcal{A}}_{\alpha} : \alpha < \kappa)/\mathcal{D}$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and mad families

Lemma (ultrapowers and mad families)

Assume $\mathbb{P} \Vdash ``\dot{\mathcal{A}}$ is an a.d. family of size $\geq \kappa$ ''. Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{\mathcal{A}}$ is not maximal''. In particular, if \mathbb{P} forces $\mathfrak{a} \geq \kappa$, then no a.d. family of $V^{\mathbb{P}}$ is maximal in $V^{\mathbb{P}^{\kappa}/\mathcal{D}}$.

<u>Proof:</u> Let $\mu \ge \kappa$. Let $\dot{\mathcal{A}} = {\dot{\mathcal{A}}_{\gamma} : \gamma < \mu}$ be a \mathbb{P} -name for an a.d. family. Consider $\dot{\mathcal{A}} = (\dot{\mathcal{A}}_{\alpha} : \alpha < \kappa)/\mathcal{D}$.

<u>Claim</u>: \dot{A} is forced to be a.d. from all members of \dot{A} .

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and mad families

Lemma (ultrapowers and mad families)

Assume $\mathbb{P} \Vdash ``\dot{A}$ is an a.d. family of size $\geq \kappa$ ''. Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{A}$ is not maximal''. In particular, if \mathbb{P} forces $\mathfrak{a} \geq \kappa$, then no a.d. family of $V^{\mathbb{P}}$ is maximal in $V^{\mathbb{P}^{\kappa}/\mathcal{D}}$.

<u>Proof:</u> Let $\mu \ge \kappa$. Let $\dot{\mathcal{A}} = \{\dot{\mathcal{A}}_{\gamma} : \gamma < \mu\}$ be a \mathbb{P} -name for an a.d. family. Consider $\dot{\mathcal{A}} = (\dot{\mathcal{A}}_{\alpha} : \alpha < \kappa)/\mathcal{D}$.

<u>Claim</u>: \dot{A} is forced to be a.d. from all members of \dot{A} .

Fix
$$\gamma < \mu$$
. For $\alpha < \kappa$ with $\alpha \neq \gamma$: $\Vdash_{\mathbb{P}} |\dot{A}_{\gamma} \cap \dot{A}_{\alpha}| < \omega$
Thus: $\{\alpha < \kappa : \Vdash_{\mathbb{P}} |\dot{A}_{\gamma} \cap \dot{A}_{\alpha}| < \omega\}$ belongs to \mathcal{D} .
Hence: $\Vdash_{\mathbb{P}^{\kappa}/\mathcal{D}} |\dot{A}_{\gamma} \cap \dot{A}| < \omega$. \Box

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers and mad families

Lemma (ultrapowers and mad families)

Assume $\mathbb{P} \Vdash ``\dot{\mathcal{A}}$ is an a.d. family of size $\geq \kappa''$. Then $\mathbb{P}^{\kappa}/\mathcal{D} \Vdash ``\dot{\mathcal{A}}$ is not maximal''. In particular, if \mathbb{P} forces $\mathfrak{a} \geq \kappa$, then no a.d. family of $V^{\mathbb{P}}$ is maximal in $V^{\mathbb{P}^{\kappa}/\mathcal{D}}$.

Main point: Taking ultrapowers kills mad families of size $\geq \kappa$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

- Lecture 1: Definability
 - Suslin ccc forcing
 - Iteration of definable forcing
 - Applications
- 2 Lecture 2: Matrices
 - Extending ultrafilters
 - Matrix iterations
 - Applications
- 3 Lecture 3: Ultrapowers
 - Ultrapowers of p.o.'s
 - Ultrapowers and iterations
 - Applications
- 4 Lecture 4: Witnesses
 - The problem
 - The construction

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Preservation of complete embeddability

We next look at ultrapowers of whole iterations. The basic result says:

イロト イポト イヨト イヨト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Preservation of complete embeddability

We next look at ultrapowers of whole iterations. The basic result says:

Lemma (Preservation of complete embeddability)

Assume $\mathbb{P} < \circ \mathbb{Q}$. Then $\mathbb{P}^{\kappa}/\mathcal{D} < \circ \mathbb{Q}^{\kappa}/\mathcal{D}$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Preservation of complete embeddability

We next look at ultrapowers of whole iterations. The basic result says:

Lemma (Preservation of complete embeddability)

Assume $\mathbb{P} < \circ \mathbb{Q}$. Then $\mathbb{P}^{\kappa}/\mathcal{D} < \circ \mathbb{Q}^{\kappa}/\mathcal{D}$.

Proof: By elementarity:

<ロト <同ト < 三ト < 三ト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Preservation of complete embeddability

We next look at ultrapowers of whole iterations. The basic result says:

Lemma (Preservation of complete embeddability)

Assume $\mathbb{P} < \circ \mathbb{Q}$. Then $\mathbb{P}^{\kappa}/\mathcal{D} < \circ \mathbb{Q}^{\kappa}/\mathcal{D}$.

<u>Proof:</u> By elementarity: Assume *D* predense in $\mathbb{P}^{\kappa}/\mathcal{D}$. Then: { $\alpha < \kappa : \{f(\alpha) : [f] \in D\}$ predense in $\mathbb{P}\} \in \mathcal{D}$. Hence: { $\alpha < \kappa : \{f(\alpha) : [f] \in D\}$ predense in $\mathbb{Q}\} \in \mathcal{D}$. Thus: *D* predense in $\mathbb{Q}^{\kappa}/\mathcal{D}$. \Box

<ロト <同ト < 三ト < 三ト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers of iterations

Assume $(\mathbb{P}_{\gamma} : \gamma \leq \mu)$ is an iteration. Then: $(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma \leq \mu)$ is again an iteration.

イロト イポト イヨト イヨト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers of iterations

Assume $(\mathbb{P}_{\gamma} : \gamma \leq \mu)$ is an iteration. Then: $(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma \leq \mu)$ is again an iteration. Note that we make no requirements about limits. In fact, "being a direct limit" is in general NOT preserved by taking the ultrapower:

<ロト <同ト < 三ト < 三ト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers of iterations

Assume $(\mathbb{P}_{\gamma} : \gamma \leq \mu)$ is an iteration. Then: $(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma \leq \mu)$ is again an iteration. Note that we make no requirements about limits. In fact, "being a direct limit" is in general NOT preserved by taking the ultrapower:

Lemma (Ultrapower of an iteration)

Assume $\mathbb{P}_{\mu} = \lim \operatorname{dir}(\mathbb{P}_{\gamma} : \gamma < \mu)$. Then $\lim \operatorname{dir}(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma < \mu) < \circ \mathbb{P}_{\mu}^{\kappa}/\mathcal{D}$. Also $\mathbb{P}_{\mu}^{\kappa}/\mathcal{D} = \lim \operatorname{dir}(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma < \mu)$ iff $cf(\mu) \neq \kappa$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers of iterations

Lemma (Ultrapower of an iteration)

Assume
$$\mathbb{P}_{\mu} = \lim \operatorname{dir}(\mathbb{P}_{\gamma} : \gamma < \mu).$$

Then $\lim \operatorname{dir}(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma < \mu) < \circ \mathbb{P}_{\mu}^{\kappa}/\mathcal{D}.$
Also $\mathbb{P}_{\mu}^{\kappa}/\mathcal{D} = \lim \operatorname{dir}(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma < \mu)$ iff $cf(\mu) \neq \kappa.$

<u>Proof:</u> Second statement: Let $[f] \in \mathbb{P}^{\kappa}_{\mu}/\mathcal{D}$.

イロト イポト イヨト イヨト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers of iterations

Lemma (Ultrapower of an iteration)

Assume $\mathbb{P}_{\mu} = \lim \operatorname{dir}(\mathbb{P}_{\gamma} : \gamma < \mu)$. Then $\lim \operatorname{dir}(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma < \mu) < \circ \mathbb{P}_{\mu}^{\kappa}/\mathcal{D}$. Also $\mathbb{P}_{\mu}^{\kappa}/\mathcal{D} = \lim \operatorname{dir}(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma < \mu)$ iff $cf(\mu) \neq \kappa$.

<u>Proof</u>: Second statement: Let $[f] \in \mathbb{P}^{\kappa}_{\mu}/\mathcal{D}$.

 $cf(\mu) \neq \kappa$: there is $\gamma < \mu$ such that $\{\alpha : f(\alpha) \in \mathbb{P}_{\gamma}\} \in \mathcal{D}$. Hence: $[f] \in \mathbb{P}_{\gamma}^{\kappa}/\mathcal{D}$. Therefore: $\mathbb{P}_{\mu}^{\kappa}/\mathcal{D}$ is direct limit.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers of iterations

Lemma (Ultrapower of an iteration)

Assume $\mathbb{P}_{\mu} = \lim \operatorname{dir}(\mathbb{P}_{\gamma} : \gamma < \mu)$. Then $\lim \operatorname{dir}(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma < \mu) < \circ \mathbb{P}_{\mu}^{\kappa}/\mathcal{D}$. Also $\mathbb{P}_{\mu}^{\kappa}/\mathcal{D} = \lim \operatorname{dir}(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma < \mu)$ iff $cf(\mu) \neq \kappa$.

<u>Proof:</u> Second statement: Let $[f] \in \mathbb{P}^{\kappa}_{\mu}/\mathcal{D}$.

 $cf(\mu) \neq \kappa$: there is $\gamma < \mu$ such that $\{\alpha : f(\alpha) \in \mathbb{P}_{\gamma}\} \in \mathcal{D}$. Hence: $[f] \in \mathbb{P}_{\gamma}^{\kappa}/\mathcal{D}$. Therefore: $\mathbb{P}_{\mu}^{\kappa}/\mathcal{D}$ is direct limit.

 $cf(\mu) = \kappa$ and $(\gamma_{\alpha} : \alpha < \kappa)$ is cofinal in μ : choose $f \in \mathbb{P}_{\mu}^{\kappa}$ with $f(\alpha) \in \mathbb{P}_{\mu} \setminus \mathbb{P}_{\gamma_{\alpha}}$. Then $[f] \in \mathbb{P}_{\mu}^{\kappa} / \mathcal{D}$ does not belong to the direct limit.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Ultrapowers of iterations

Lemma (Ultrapower of an iteration)

Assume $\mathbb{P}_{\mu} = \lim \operatorname{dir}(\mathbb{P}_{\gamma} : \gamma < \mu)$. Then $\lim \operatorname{dir}(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma < \mu) < \circ \mathbb{P}_{\mu}^{\kappa}/\mathcal{D}$. Also $\mathbb{P}_{\mu}^{\kappa}/\mathcal{D} = \lim \operatorname{dir}(\mathbb{P}_{\gamma}^{\kappa}/\mathcal{D} : \gamma < \mu)$ iff $cf(\mu) \neq \kappa$.

Proof:

First statement: assume $cf(\mu) > \omega$. Assume $\{[f_n] : n \in \omega\}$ maximal antichain in $\lim \operatorname{dir}(\mathbb{P}^{\kappa}_{\gamma}/\mathcal{D} : \gamma < \mu)$. Then: $\{[f_n] : n \in \omega\}$ maximal antichain in some $\mathbb{P}^{\kappa}_{\gamma}/\mathcal{D}$. Therefore, also maximal in $\mathbb{P}^{\kappa}_{\mu}/\mathcal{D}$. \Box

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

イロト イポト イヨト イヨト

DQ P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular
$$\mu > \kappa$$
.
Let $(\mathbb{D}_{\gamma} : \gamma \leq \mu)$ be the fsi of Hechler forcing \mathbb{D}
(That is,

•
$$\mathbb{D}_{\gamma+1} = \mathbb{D}_{\gamma} \star \dot{\mathbb{D}}$$

•
$$\mathbb{D}_{\delta} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{D}_{\gamma}$$
 for limit δ .)

イロト イポト イヨト イヨト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular $\mu > \kappa$. Let $(\mathbb{D}_{\gamma} : \gamma \leq \mu)$ be the fsi of Hechler forcing \mathbb{D} .

Obtain iteration $(\mathbb{D}^{\kappa}_{\gamma}/\mathcal{D}: \gamma \leq \mu)$ such that:

• $\mathbb{D}_{\delta}^{\kappa}/\mathcal{D} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{D}_{\gamma}^{\kappa}/\mathcal{D}$ iff $cf(\delta) \neq \kappa$ (In particular, this is true for $\delta = \mu$.)

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular $\mu > \kappa$. Let $(\mathbb{D}_{\gamma} : \gamma \leq \mu)$ be the fsi of Hechler forcing \mathbb{D} .

Obtain iteration $(\mathbb{D}^{\kappa}_{\gamma}/\mathcal{D}:\gamma\leq\mu)$ such that:

•
$$\mathbb{D}^{\kappa}_{\delta}/\mathcal{D} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{D}^{\kappa}_{\gamma}/\mathcal{D}$$
 iff $cf(\delta) \neq \kappa$

•
$$\mathbb{D}_{\gamma+1}^{\kappa}/\mathcal{D} = \mathbb{D}_{\gamma}^{\kappa}/\mathcal{D} \star \dot{\mathbb{D}}$$

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular $\mu > \kappa$. Let $(\mathbb{D}_{\gamma} : \gamma \leq \mu)$ be the fsi of Hechler forcing \mathbb{D} .

Obtain iteration $(\mathbb{D}_{\gamma}^{\kappa}/\mathcal{D}: \gamma \leq \mu)$ such that:

• $\mathbb{D}^{\kappa}_{\delta}/\mathcal{D} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{D}^{\kappa}_{\gamma}/\mathcal{D}$ iff $cf(\delta) \neq \kappa$

•
$$\mathbb{D}_{\gamma+1}^{\kappa}/\mathcal{D} = \mathbb{D}_{\gamma}^{\kappa}/\mathcal{D} \star \mathbb{D}$$

• $(\mathbb{D}_{\gamma}^{\kappa}/\mathcal{D}: \gamma < \mu)$ is an fsi of Hechler forcing of length $j(\mu)$ (I.e. $\mathbb{D}_{\gamma}^{\kappa}/\mathcal{D} = \mathbb{D}_{j(\gamma)}$.)

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular $\mu > \kappa$. Let $(\mathbb{D}_{\gamma} : \gamma \leq \mu)$ be the fsi of Hechler forcing \mathbb{D} .

Obtain iteration $(\mathbb{D}^{\kappa}_{\gamma}/\mathcal{D}:\gamma\leq\mu)$ such that:

• $\mathbb{D}_{\delta}^{\kappa}/\mathcal{D} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{D}_{\gamma}^{\kappa}/\mathcal{D} \text{ iff } cf(\delta) \neq \kappa$

•
$$\mathbb{D}_{\gamma+1}^{\kappa}/\mathcal{D} = \mathbb{D}_{\gamma}^{\kappa}/\mathcal{D} \star \dot{\mathbb{D}}$$

- $(\mathbb{D}^{\kappa}_{\gamma}/\mathcal{D}:\gamma<\mu)$ is an fsi of Hechler forcing of length $j(\mu)$
- The dominating family added by \mathbb{D}_{μ} is still dominating in $V^{\mathbb{D}_{\mu}^{\kappa}/\mathcal{D}}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Example for ultrapower of an iteration

Let us look at an example of an iteration and its ultrapower.

Fix regular $\mu > \kappa$. Let $(\mathbb{D}_{\gamma} : \gamma \leq \mu)$ be the fsi of Hechler forcing \mathbb{D} .

Obtain iteration $\left(\mathbb{D}_{\gamma}^{\kappa}/\mathcal{D}:\gamma\leq\mu\right)$ such that:

• $\mathbb{D}^{\kappa}_{\delta}/\mathcal{D} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{D}^{\kappa}_{\gamma}/\mathcal{D} \text{ iff } cf(\delta) \neq \kappa$

•
$$\mathbb{D}_{\gamma+1}^{\kappa}/\mathcal{D} = \mathbb{D}_{\gamma}^{\kappa}/\mathcal{D} \star \dot{\mathbb{D}}$$

- $(\mathbb{D}^{\kappa}_{\gamma}/\mathcal{D}:\gamma<\mu)$ is an fsi of Hechler forcing of length $j(\mu)$
- The dominating family added by \mathbb{D}_{μ} is still dominating in $V^{\mathbb{D}_{\mu}^{\kappa}/\mathcal{D}}$
- No a.d. family of $V^{\mathbb{D}_{\mu}}$ is mad in $V^{\mathbb{D}_{\mu}^{\kappa}/\mathcal{D}}$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Matrices of iterated ultrapowers

Assume $\lambda > \mu > \kappa$ regular.

Start with iteration $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$.

イロト イポト イヨト イヨト

DQ P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Matrices of iterated ultrapowers

Assume $\lambda > \mu > \kappa$ regular.

Start with iteration $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$. Put $\mathbb{P}^1_{\gamma} := (\mathbb{P}^0_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Matrices of iterated ultrapowers

Assume $\lambda > \mu > \kappa$ regular.

Start with iteration $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$. Put $\mathbb{P}^1_{\gamma} := (\mathbb{P}^0_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$. Put $\mathbb{P}^2_{\gamma} := (\mathbb{P}^1_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^2_{\gamma} : \gamma \leq \mu)$. Etc.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Matrices of iterated ultrapowers

Assume $\lambda > \mu > \kappa$ regular.

Start with iteration $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$. Put $\mathbb{P}^1_{\gamma} := (\mathbb{P}^0_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$. Put $\mathbb{P}^2_{\gamma} := (\mathbb{P}^1_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^2_{\gamma} : \gamma \leq \mu)$. Etc.

More generally, for $\alpha < \lambda$, put $\mathbb{P}_{\gamma}^{\alpha+1} := (\mathbb{P}_{\gamma}^{\alpha})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}_{\gamma}^{\alpha+1} : \gamma \leq \mu)$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Matrices of iterated ultrapowers

Assume $\lambda > \mu > \kappa$ regular.

Start with iteration $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$. Put $\mathbb{P}^1_{\gamma} := (\mathbb{P}^0_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$. Put $\mathbb{P}^2_{\gamma} := (\mathbb{P}^1_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^2_{\gamma} : \gamma \leq \mu)$. Etc.

More generally, for $\alpha < \lambda$, put $\mathbb{P}_{\gamma}^{\alpha+1} := (\mathbb{P}_{\gamma}^{\alpha})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}_{\gamma}^{\alpha+1} : \gamma \leq \mu)$.

What do we do for limit α ?

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Matrices of iterated ultrapowers

Assume $\lambda > \mu > \kappa$ regular.

Start with iteration $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$. Put $\mathbb{P}^1_{\gamma} := (\mathbb{P}^0_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$. Put $\mathbb{P}^2_{\gamma} := (\mathbb{P}^1_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^2_{\gamma} : \gamma \leq \mu)$. Etc.

More generally, for $\alpha < \lambda$, put $\mathbb{P}_{\gamma}^{\alpha+1} := (\mathbb{P}_{\gamma}^{\alpha})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}_{\gamma}^{\alpha+1} : \gamma \leq \mu)$.

What do we do for limit α ? For some applications $\mathbb{P}^{\alpha}_{\gamma} = \lim \operatorname{dir}_{\beta < \alpha} \mathbb{P}^{\beta}_{\gamma}$ will be OK.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Matrices of iterated ultrapowers

Assume $\lambda > \mu > \kappa$ regular.

Start with iteration $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$. Put $\mathbb{P}^1_{\gamma} := (\mathbb{P}^0_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$. Put $\mathbb{P}^2_{\gamma} := (\mathbb{P}^1_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^2_{\gamma} : \gamma \leq \mu)$. Etc.

More generally, for $\alpha < \lambda$, put $\mathbb{P}_{\gamma}^{\alpha+1} := (\mathbb{P}_{\gamma}^{\alpha})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}_{\gamma}^{\alpha+1} : \gamma \leq \mu)$.

What do we do for limit α ? For some applications $\mathbb{P}^{\alpha}_{\gamma} = \lim \dim_{\beta < \alpha} \mathbb{P}^{\beta}_{\gamma}$ will be OK. For some applications want something else: Suppose $(\mathbb{D}^{\beta}_{\gamma} : \gamma \leq \mu)$ are such that $\mathbb{D}^{\beta}_{\gamma+1} = \mathbb{D}^{\beta}_{\gamma} \star \dot{\mathbb{D}}$ for $\beta < \alpha$. Then still want $\mathbb{D}^{\alpha}_{\gamma+1} = \mathbb{D}^{\alpha}_{\gamma} \star \dot{\mathbb{D}}$. Doable but more complicated!

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

- Lecture 1: Definability
 - Suslin ccc forcing
 - Iteration of definable forcing
 - Applications
- 2 Lecture 2: Matrices
 - Extending ultrafilters
 - Matrix iterations
 - Applications
- 3 Lecture 3: Ultrapowers
 - Ultrapowers of p.o.'s
 - Ultrapowers and iterations
 - Applications
- 4 Lecture 4: Witnesses
 - The problem
 - The construction

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

More cardinal invariants

$$\mathcal{A} \subseteq [\omega]^{\omega}$$
 a.d. family: $|A \cap B| < \omega$ for $A \neq B \in \mathcal{A}$
 \mathcal{A} mad family: \mathcal{A} is a.d. and maximal
(I.e., for all $C \in [\omega]^{\omega}$ there is $A \in \mathcal{A}$ with $|C \cap A| = \omega$.)

Jörg Brendle Aspects of iterated forcing

イロト イヨト イヨト イヨト

3

990

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

More cardinal invariants

 $\mathcal{A} \subseteq [\omega]^{\omega}$ a.d. family: $|A \cap B| < \omega$ for $A \neq B \in \mathcal{A}$ \mathcal{A} mad family: \mathcal{A} is a.d. and maximal

 $\mathfrak{a} := \min\{|\mathcal{A}| : \mathcal{A} \text{ is infinite mad}\}, \text{ the almost disjointness number.}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

More cardinal invariants

 $\mathcal{A} \subseteq [\omega]^{\omega}$ a.d. family: $|A \cap B| < \omega$ for $A \neq B \in \mathcal{A}$ \mathcal{A} mad family: \mathcal{A} is a.d. and maximal

 $\mathfrak{a} := \min\{|\mathcal{A}| : \mathcal{A} \text{ is infinite mad}\}, \text{ the almost disjointness number.}$

 \mathcal{U} ultrafilter on ω . \mathcal{F} base of \mathcal{U} : for all $A \in \mathcal{U}$ there is $B \in \mathcal{F}$ with $B \subseteq^* A$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

More cardinal invariants

 $\mathcal{A} \subseteq [\omega]^{\omega}$ a.d. family: $|A \cap B| < \omega$ for $A \neq B \in \mathcal{A}$ \mathcal{A} mad family: \mathcal{A} is a.d. and maximal

 $\mathfrak{a} := \min\{|\mathcal{A}| : \mathcal{A} \text{ is infinite mad}\}, \text{ the almost disjointness number.}$

 \mathcal{U} ultrafilter on ω . \mathcal{F} base of \mathcal{U} : for all $A \in \mathcal{U}$ there is $B \in \mathcal{F}$ with $B \subseteq^* A$.

 $\chi(\mathcal{U}) := \min\{|\mathcal{F}| : \mathcal{F} \text{ base of } \mathcal{U}\}, \text{ the character of } \mathcal{U}.$ $\mathfrak{u} := \min\{\chi(\mathcal{U}) : \mathcal{U} \text{ ultrafilter on } \omega\}, \text{ the ultrafilter number.}$

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

More cardinal invariants

 $\mathcal{A} \subseteq [\omega]^{\omega}$ a.d. family: $|A \cap B| < \omega$ for $A \neq B \in \mathcal{A}$ \mathcal{A} mad family: \mathcal{A} is a.d. and maximal

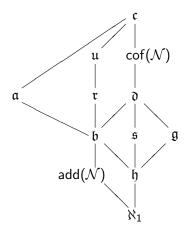
 $\mathfrak{a} := \min\{|\mathcal{A}| : \mathcal{A} \text{ is infinite mad}\}, \text{ the almost disjointness number.}$

 \mathcal{U} ultrafilter on ω . \mathcal{F} base of \mathcal{U} : for all $A \in \mathcal{U}$ there is $B \in \mathcal{F}$ with $B \subseteq^* A$.

 $\chi(\mathcal{U}) := \min\{|\mathcal{F}| : \mathcal{F} \text{ base of } \mathcal{U}\}, \text{ the character of } \mathcal{U}.$ $\mathfrak{u} := \min\{\chi(\mathcal{U}) : \mathcal{U} \text{ ultrafilter on } \omega\}, \text{ the ultrafilter number.}$

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

ZFC-inequalities: another diagram



・ロト ・ 同ト ・ ヨト ・

Э

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

First application: \mathfrak{a} versus \mathfrak{d}

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mu$ holds. In particular $\mathfrak{d} < \mathfrak{a}$ is consistent.

Jörg Brendle Aspects of iterated forcing

イロト イポト イヨト イヨト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

First application: \mathfrak{a} versus \mathfrak{d}

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mu$ holds. In particular $\mathfrak{d} < \mathfrak{a}$ is consistent.

<u>Proof:</u> Start with $(\mathbb{D}^0_{\gamma} : \gamma \leq \mu)$: fsi of Hechler forcing. Repeatedly take ultrapower to get $\mathbb{D}^{\alpha+1}_{\gamma} = (\mathbb{D}^{\alpha}_{\gamma})^{\kappa}/\mathcal{D}$. Guarantee in limit step α that still $\mathbb{D}^{\alpha}_{\gamma+1} = \mathbb{D}^{\alpha}_{\gamma} \star \dot{\mathbb{D}}$.

<ロト <同ト < 国ト < 国ト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

First application: \mathfrak{a} versus \mathfrak{d}

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mu$ holds. In particular $\mathfrak{d} < \mathfrak{a}$ is consistent.

<u>Proof:</u> Start with $(\mathbb{D}^0_{\gamma} : \gamma \leq \mu)$: fsi of Hechler forcing. Repeatedly take ultrapower to get $\mathbb{D}^{\alpha+1}_{\gamma} = (\mathbb{D}^{\alpha}_{\gamma})^{\kappa}/\mathcal{D}$. Guarantee in limit step α that still $\mathbb{D}^{\alpha}_{\gamma+1} = \mathbb{D}^{\alpha}_{\gamma} \star \dot{\mathbb{D}}$.

 $\mathfrak{a} \geq \lambda$: small a.d. families destroyed by ultrapower.

<ロト <同ト < 国ト < 国ト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

First application: \mathfrak{a} versus \mathfrak{d}

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mu$ holds. In particular $\mathfrak{d} < \mathfrak{a}$ is consistent.

<u>Proof:</u> Start with $(\mathbb{D}^0_{\gamma} : \gamma \leq \mu)$: fsi of Hechler forcing. Repeatedly take ultrapower to get $\mathbb{D}^{\alpha+1}_{\gamma} = (\mathbb{D}^{\alpha}_{\gamma})^{\kappa}/\mathcal{D}$. Guarantee in limit step α that still $\mathbb{D}^{\alpha}_{\gamma+1} = \mathbb{D}^{\alpha}_{\gamma} \star \dot{\mathbb{D}}$.

 $\mathfrak{a} \geq \lambda$: small a.d. families destroyed by ultrapower.

 $\mathfrak{b} = \mathfrak{d} = \mu$: $(\mathbb{D}^{\lambda}_{\gamma} : \gamma \leq \mu)$ still iteration of \mathbb{D} (though not with direct limits). \Box

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

First application: \mathfrak{a} versus \mathfrak{d}

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mu$ holds. In particular $\mathfrak{d} < \mathfrak{a}$ is consistent.

<u>Remark:</u> Using iterations along templates, Shelah also proved $CON(\mathfrak{d} < \mathfrak{a})$ on the basis of CON(ZFC) alone.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 1

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \mu$ holds. In particular $\mathfrak{u} < \mathfrak{a}$ is consistent.

< ロ > < 同 > < 三 > < 三 >

MQ (P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 1

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \mu$ holds. In particular $\mathfrak{u} < \mathfrak{a}$ is consistent.

<u>Proof:</u> Build fsi $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$ and names $(\dot{\mathcal{U}}^0_{\gamma} : \gamma \leq \mu)$, $(\dot{\ell}_{\gamma} : \gamma < \mu)$ such that

(i) $\mathbb{P}^{\mathsf{0}}_{\gamma} \Vdash \dot{\mathcal{U}}^{\mathsf{0}}_{\gamma}$ is an ultrafilter

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 1

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \mu$ holds. In particular $\mathfrak{u} < \mathfrak{a}$ is consistent.

<u>Proof:</u> Build fsi $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$ and names $(\dot{\mathcal{U}}^0_{\gamma} : \gamma \leq \mu)$, $(\dot{\ell}_{\gamma} : \gamma < \mu)$ such that

(i)
$$\mathbb{P}^0_{\gamma} \Vdash \dot{\mathcal{U}}^0_{\gamma}$$
 is an ultrafilter
(ii) $\mathbb{P}^0_{\gamma} \Vdash ``\dot{\ell}_{\gamma}$ is the name for the $\mathbb{L}_{\dot{\mathcal{U}}^0_{\gamma}}$ -generic"

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 1

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \mu$ holds. In particular $\mathfrak{u} < \mathfrak{a}$ is consistent.

<u>Proof:</u> Build fsi $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$ and names $(\dot{\mathcal{U}}^0_{\gamma} : \gamma \leq \mu)$, $(\dot{\ell}_{\gamma} : \gamma < \mu)$ such that

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 1

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \mu$ holds. In particular $\mathfrak{u} < \mathfrak{a}$ is consistent.

<u>Proof:</u> Build fsi $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$ and names $(\dot{\mathcal{U}}^0_{\gamma} : \gamma \leq \mu)$, $(\dot{\ell}_{\gamma} : \gamma < \mu)$ such that

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 1

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \mu$ holds. In particular $\mathfrak{u} < \mathfrak{a}$ is consistent.

<u>Proof:</u> Build fsi $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$ and names $(\dot{\mathcal{U}}^0_{\gamma} : \gamma \leq \mu)$, $(\dot{\ell}_{\gamma} : \gamma < \mu)$ such that

(i)
$$\mathbb{P}^{0}_{\gamma} \Vdash \dot{\mathcal{U}}^{0}_{\gamma}$$
 is an ultrafilter
(ii) $\mathbb{P}^{0}_{\gamma} \Vdash "\dot{\ell}_{\gamma}$ is the name for the $\mathbb{L}_{\dot{\mathcal{U}}^{0}_{\gamma}}$ -generic"
(iii) $\mathbb{P}^{0}_{\gamma} \Vdash \operatorname{ran}(\dot{\ell}_{\delta}) \in \dot{\mathcal{U}}^{0}_{\gamma}$ for $\delta < \gamma$
(iv) $\mathbb{P}^{0}_{\gamma+1} = \mathbb{P}^{0}_{\gamma} \star \mathbb{L}_{\dot{\mathcal{U}}^{0}_{\gamma}}$
Note: (iii) implies
(v) $\mathbb{P}^{0}_{\gamma+1} \Vdash \dot{\mathcal{U}}^{0}_{\delta} \subseteq \dot{\mathcal{U}}^{0}_{\gamma}$ and $\operatorname{ran}(\dot{\ell}_{\gamma}) \subseteq \operatorname{ran}(\dot{\ell}_{\delta})$ for $\delta \leq \gamma$ and $\delta \leq \gamma$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 1

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \mu$ holds. In particular $\mathfrak{u} < \mathfrak{a}$ is consistent.

<u>Proof:</u> Build fsi $(\mathbb{P}^0_{\gamma} : \gamma \leq \mu)$ and names $(\dot{\mathcal{U}}^0_{\gamma} : \gamma \leq \mu)$, $(\dot{\ell}_{\gamma} : \gamma < \mu)$ such that

(i)
$$\mathbb{P}^{0}_{\gamma} \Vdash \dot{\mathcal{U}}^{0}_{\gamma}$$
 is an ultrafilter
(ii) $\mathbb{P}^{0}_{\gamma} \Vdash ``\dot{\ell}_{\gamma}$ is the name for the $\mathbb{L}_{\dot{\mathcal{U}}^{0}_{\gamma}}$ -generic''
(iii) $\mathbb{P}^{0}_{\gamma} \Vdash \operatorname{ran}(\dot{\ell}_{\delta}) \in \dot{\mathcal{U}}^{0}_{\gamma}$ for $\delta < \gamma$
(iv) $\mathbb{P}^{0}_{\gamma+1} = \mathbb{P}^{0}_{\gamma} \star \mathbb{L}_{\dot{\mathcal{U}}^{0}_{\gamma}}$
Hence: \mathbb{P}^{0}_{μ} forces $\dot{\mathcal{U}}^{0}_{\mu}$ is generated by $\operatorname{ran}(\dot{\ell}_{\gamma}), \gamma \leq \underline{\mu}$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 2

Take the ultrapower $\mathbb{P}^1_{\gamma} := (\mathbb{P}^0_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$ such that: (i) $\mathbb{P}^1_{\delta} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{P}^1_{\gamma}$ iff $cf(\delta) \neq \kappa$

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 2

Take the ultrapower
$$\mathbb{P}^1_{\gamma} := (\mathbb{P}^0_{\gamma})^{\kappa}/\mathcal{D}$$
.
Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$ such that:
(i) $\mathbb{P}^1_{\delta} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{P}^1_{\gamma}$ iff $cf(\delta) \neq \kappa$
(ii) $\mathbb{P}^1_{\gamma} \Vdash \dot{\mathcal{U}}^1_{\gamma}$ is an ultrafilter extending $\dot{\mathcal{U}}^0_{\gamma}$

イロト イヨト イヨト イヨト

990

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 2

Take the ultrapower
$$\mathbb{P}^1_{\gamma} := (\mathbb{P}^0_{\gamma})^{\kappa}/\mathcal{D}$$
.
Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$ such that:
(i) $\mathbb{P}^1_{\delta} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{P}^1_{\gamma}$ iff $cf(\delta) \neq \kappa$
(ii) $\mathbb{P}^1_{\gamma} \Vdash \dot{\mathcal{U}}^1_{\gamma}$ is an ultrafilter extending $\dot{\mathcal{U}}^0_{\gamma}$
(iii) $\mathbb{P}^1_{\gamma} \Vdash ``\dot{\ell}_{\gamma}$ is the name for the $\mathbb{L}_{\dot{\mathcal{U}}^1_{\gamma}}$ -generic"

イロト イヨト イヨト イヨト

3

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 2

Take the ultrapower
$$\mathbb{P}_{\gamma}^{1} := (\mathbb{P}_{\gamma}^{0})^{\kappa}/\mathcal{D}$$
.
Obtain iteration $(\mathbb{P}_{\gamma}^{1} : \gamma \leq \mu)$ such that:
(i) $\mathbb{P}_{\delta}^{1} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{P}_{\gamma}^{1}$ iff $cf(\delta) \neq \kappa$
(ii) $\mathbb{P}_{\gamma}^{1} \Vdash \dot{\mathcal{U}}_{\gamma}^{1}$ is an ultrafilter extending $\dot{\mathcal{U}}_{\gamma}^{0}$
(iii) $\mathbb{P}_{\gamma}^{1} \Vdash \dot{\mathcal{U}}_{\gamma}$ is the name for the $\mathbb{L}_{\dot{\mathcal{U}}_{\gamma}^{1}}$ -generic"
(iv) $\mathbb{P}_{\gamma}^{1} \Vdash \operatorname{ran}(\dot{\ell}_{\delta}) \in \dot{\mathcal{U}}_{\gamma}^{1}$ for $\delta < \gamma$

イロト イヨト イヨト イヨト

3

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 2

Take the ultrapower
$$\mathbb{P}^{1}_{\gamma} := (\mathbb{P}^{0}_{\gamma})^{\kappa}/\mathcal{D}$$
.
Obtain iteration $(\mathbb{P}^{1}_{\gamma} : \gamma \leq \mu)$ such that:
(i) $\mathbb{P}^{1}_{\delta} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{P}^{1}_{\gamma}$ iff $cf(\delta) \neq \kappa$
(ii) $\mathbb{P}^{1}_{\gamma} \Vdash \dot{\mathcal{U}}^{1}_{\gamma}$ is an ultrafilter extending $\dot{\mathcal{U}}^{0}_{\gamma}$
(iii) $\mathbb{P}^{1}_{\gamma} \Vdash \dot{\mathcal{U}}^{1}_{\gamma}$ is the name for the $\mathbb{L}_{\dot{\mathcal{U}}^{1}_{\gamma}}$ -generic"
(iv) $\mathbb{P}^{1}_{\gamma} \Vdash \operatorname{ran}(\dot{\ell}_{\delta}) \in \dot{\mathcal{U}}^{1}_{\gamma}$ for $\delta < \gamma$
(v) $\mathbb{P}^{1}_{\gamma+1} = \mathbb{P}^{1}_{\gamma} \star \mathbb{L}_{\dot{\mathcal{U}}^{1}_{\gamma}}$

・ロト ・回ト ・ヨト ・ヨト

3

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 2

Take the ultrapower
$$\mathbb{P}_{\gamma}^{1} := (\mathbb{P}_{\gamma}^{0})^{\kappa}/\mathcal{D}$$
.
Obtain iteration $(\mathbb{P}_{\gamma}^{1} : \gamma \leq \mu)$ such that:
(i) $\mathbb{P}_{\delta}^{1} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{P}_{\gamma}^{1}$ iff $cf(\delta) \neq \kappa$
(ii) $\mathbb{P}_{\gamma}^{1} \Vdash \dot{\mathcal{U}}_{\gamma}^{1}$ is an ultrafilter extending $\dot{\mathcal{U}}_{\gamma}^{0}$
(iii) $\mathbb{P}_{\gamma}^{1} \Vdash \dot{\mathcal{U}}_{\gamma}^{1}$ is the name for the $\mathbb{L}_{\dot{\mathcal{U}}_{\gamma}^{1}}$ -generic"
(iv) $\mathbb{P}_{\gamma}^{1} \Vdash \operatorname{ran}(\dot{\ell}_{\delta}) \in \dot{\mathcal{U}}_{\gamma}^{1}$ for $\delta < \gamma$
(v) $\mathbb{P}_{\gamma+1}^{1} = \mathbb{P}_{\gamma}^{1} \star \mathbb{L}_{\dot{\mathcal{U}}_{\gamma}^{1}}$
(vi) $\mathbb{P}_{\gamma}^{1} \Vdash \dot{\mathcal{U}}_{\delta}^{1} \subseteq \dot{\mathcal{U}}_{\gamma}^{1}$ for $\delta < \gamma$

イロト イヨト イヨト イヨト

990

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 2

Take the ultrapower $\mathbb{P}^1_{\gamma} := (\mathbb{P}^0_{\gamma})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$ such that: (i) $\mathbb{P}^1_{\delta} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{P}^1_{\gamma}$ iff $cf(\delta) \neq \kappa$ (ii) $\mathbb{P}^1_{\gamma} \Vdash \dot{\mathcal{U}}^1_{\gamma}$ is an ultrafilter extending $\dot{\mathcal{U}}^0_{\gamma}$ (iii) $\mathbb{P}^1_{\gamma} \Vdash ``\dot{\ell}_{\gamma}$ is the name for the $\mathbb{L}_{\dot{\mathcal{U}}^1}$ -generic" (iv) $\mathbb{P}^1_{\gamma} \Vdash \operatorname{ran}(\dot{\ell}_{\delta}) \in \dot{\mathcal{U}}^1_{\gamma}$ for $\delta < \gamma$ (v) $\mathbb{P}^1_{\gamma+1} = \mathbb{P}^1_{\gamma} \star \mathbb{L}_{\dot{\mathcal{U}}^1}$ (vi) $\mathbb{P}^1_{\gamma} \Vdash \dot{\mathcal{U}}^1_{\delta} \subseteq \dot{\mathcal{U}}^1_{\gamma}$ for $\delta < \gamma$ Repeat this to get $\mathbb{P}_{\gamma}^{\alpha+1} = (\mathbb{P}_{\gamma}^{\alpha})^{\kappa} / \mathcal{D}.$ Guarantee in limit step α that still $\mathbb{P}^{\alpha}_{\gamma+1} = \mathbb{P}^{\alpha}_{\gamma} \star \dot{\mathbb{L}}_{jj\alpha}$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 2

Take the ultrapower $\mathbb{P}^1_{\sim} := (\mathbb{P}^0_{\sim})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$ such that: (i) $\mathbb{P}^1_{\delta} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{P}^1_{\gamma}$ iff $cf(\delta) \neq \kappa$ (ii) $\mathbb{P}^1_{\gamma} \Vdash \dot{\mathcal{U}}^1_{\gamma}$ is an ultrafilter extending $\dot{\mathcal{U}}^0_{\gamma}$ (iii) $\mathbb{P}^1_{\gamma} \Vdash ``\ell_{\gamma}$ is the name for the \mathbb{L}_{ij^1} -generic" (iv) $\mathbb{P}^1_{\gamma} \Vdash \operatorname{ran}(\dot{\ell}_{\delta}) \in \dot{\mathcal{U}}^1_{\gamma}$ for $\delta < \gamma$ (v) $\mathbb{P}^1_{\gamma+1} = \mathbb{P}^1_{\gamma} \star \mathbb{L}_{\dot{\gamma}^1}$ (vi) $\mathbb{P}^1_{\gamma} \Vdash \dot{\mathcal{U}}^1_{\delta} \subseteq \dot{\mathcal{U}}^1_{\gamma}$ for $\delta < \gamma$ Repeat this to get $\mathbb{P}^{\alpha+1}_{\gamma} = (\mathbb{P}^{\alpha}_{\gamma})^{\kappa} / \mathcal{D}$. Guarantee in limit step α that still $\mathbb{P}_{\gamma+1}^{\alpha} = \mathbb{P}_{\gamma}^{\alpha} \star \dot{\mathbb{L}}_{jj\alpha}$.

 $\mathfrak{a} \geq \lambda$: small a.d. families destroyed by ultrapower.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Second application: \mathfrak{a} versus \mathfrak{u} 2

Take the ultrapower $\mathbb{P}^1_{\sim} := (\mathbb{P}^0_{\sim})^{\kappa} / \mathcal{D}$. Obtain iteration $(\mathbb{P}^1_{\gamma} : \gamma \leq \mu)$ such that: (i) $\mathbb{P}^1_{\delta} = \lim \operatorname{dir}_{\gamma < \delta} \mathbb{P}^1_{\gamma}$ iff $cf(\delta) \neq \kappa$ (ii) $\mathbb{P}^1_{\gamma} \Vdash \dot{\mathcal{U}}^1_{\gamma}$ is an ultrafilter extending $\dot{\mathcal{U}}^0_{\gamma}$ (iii) $\mathbb{P}^1_{\gamma} \Vdash ``\ell_{\gamma}$ is the name for the \mathbb{L}_{ij} -generic" (iv) $\mathbb{P}^1_{\gamma} \Vdash \operatorname{ran}(\dot{\ell}_{\delta}) \in \dot{\mathcal{U}}^1_{\gamma}$ for $\delta < \gamma$ (v) $\mathbb{P}^1_{\gamma+1} = \mathbb{P}^1_{\gamma} \star \mathbb{L}_{\dot{\mathcal{U}}^1_{\gamma}}$ (vi) $\mathbb{P}^1_{\gamma} \Vdash \dot{\mathcal{U}}^1_{\delta} \subseteq \dot{\mathcal{U}}^1_{\gamma}$ for $\delta < \gamma$ Repeat this to get $\mathbb{P}_{\gamma}^{\alpha+1} = (\mathbb{P}_{\gamma}^{\alpha})^{\kappa}/\mathcal{D}$. Guarantee in limit step α that still $\mathbb{P}^{\alpha}_{\gamma+1} = \mathbb{P}^{\alpha}_{\gamma} \star \mathbb{L}_{\dot{\mathcal{U}}^{\alpha}}$.

 $\mathfrak{u} = \mu$: taking ultrapowers preserves ultrafilters generated by chains of length μ . \Box

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Third application: character spectrum

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \kappa$ is regular. Then there is a ccc forcing extension in which $\mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \aleph_1$ holds, and there is no ultrafilter of character κ . In particular it is consistent that the character spectrum is non-convex.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Third application: character spectrum

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \kappa$ is regular. Then there is a ccc forcing extension in which $\mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \aleph_1$ holds, and there is no ultrafilter of character κ . In particular it is consistent that the character spectrum is non-convex.

<u>Proof sketch</u>: As in previous proof with μ replaced by \aleph_1 and \mathbb{P}_0^0 adds at least κ Cohen reals. (This guarantees the ultrapowers are nontrivial.)

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Third application: character spectrum

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \kappa$ is regular. Then there is a ccc forcing extension in which $\mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \aleph_1$ holds, and there is no ultrafilter of character κ . In particular it is consistent that the character spectrum is non-convex.

<u>Proof sketch</u>: As in previous proof with μ replaced by \aleph_1 and \mathbb{P}_0^0 adds at least κ Cohen reals.

 κ not character: taking ultrapowers kills ultrafilter bases of size $\kappa.$

<ロト <同ト < 国ト < 国ト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Third application: character spectrum

Theorem (Shelah)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \kappa$ is regular. Then there is a ccc forcing extension in which $\mathfrak{c} = \lambda$ and $\mathfrak{b} = \mathfrak{d} = \mathfrak{u} = \aleph_1$ holds, and there is no ultrafilter of character κ . In particular it is consistent that the character spectrum is non-convex.

<u>Proof sketch</u>: As in previous proof with μ replaced by \aleph_1 and \mathbb{P}_0^0 adds at least κ Cohen reals.

 κ not character: taking ultrapowers kills ultrafilter bases of size $\kappa.$

 $\mathfrak{u} = \aleph_1$ (and thus character): as before. $\mathfrak{c} = \lambda$ character: in ZFC. \Box

<ロト <同ト < 国ト < 国ト

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Forth application: \mathfrak{a} and \mathfrak{s} versus \mathfrak{b}

Theorem (B.-Fischer)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{s} = \mathfrak{c} = \lambda$ and

 $\mathfrak{b} = \mu$ holds.

イロト イポト イヨト イヨト

MQ (P

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Forth application: \mathfrak{a} and \mathfrak{s} versus \mathfrak{b}

Theorem (B.-Fischer)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular.

Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{s} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mu$ holds.

<u>Proof sketch</u>: $\mathbb{P}^{\mathbf{0}}_{\gamma}$ adds γ Cohen reals, $\gamma \leq \mu$.

Ultrapowers of p.o.'s Ultrapowers and iterations Applications

Forth application: \mathfrak{a} and \mathfrak{s} versus \mathfrak{b}

Theorem (B.-Fischer)

Assume κ is measurable, and $\lambda = \lambda^{\omega} > \mu > \kappa$ are regular. Then there is a ccc forcing extension in which $\mathfrak{a} = \mathfrak{s} = \mathfrak{c} = \lambda$ and $\mathfrak{b} = \mu$ holds.

<u>Proof sketch</u>: \mathbb{P}^{0}_{γ} adds γ Cohen reals, $\gamma \leq \mu$. Combine the methods of lectures 2 and 3 to make \mathfrak{s} and \mathfrak{a} large while keeping \mathfrak{b} small. Build fsi ($\mathbb{P}^{\alpha}_{\gamma} : \alpha \leq \lambda$) such that (i) for even α , $\mathbb{P}^{\alpha+1}_{\gamma} = \mathbb{P}^{\alpha}_{\gamma} \star \mathbb{M}_{\dot{\mathcal{U}}^{\alpha}_{\gamma}}$ (ii) for odd α , $\mathbb{P}^{\alpha+1}_{\gamma} = (\mathbb{P}^{\alpha}_{\gamma})^{\kappa}/\mathcal{D}$

The problem The construction

- Lecture 1: Definability
 - Suslin ccc forcing
 - Iteration of definable forcing
 - Applications
- 2 Lecture 2: Matrices
 - Extending ultrafilters
 - Matrix iterations
 - Applications
- 3 Lecture 3: Ultrapowers
 - Ultrapowers of p.o.'s
 - Ultrapowers and iterations
 - Applications
- 4 Lecture 4: Witnesses
 - The problem
 - The construction

< 17 ▶

→ Ξ → < Ξ</p>

The problem The construction

Relatives of \mathfrak{g} and \mathfrak{h}

Today we look at ${\mathfrak g}$ and ${\mathfrak h}$ and their relatives.

Suslin ccc iterations and matrix iterations of lectures 1 through 3 keep these cardinals small.

So such iterations cannot be used to separate them.

The problem The construction

Relatives of \mathfrak{g} and \mathfrak{h}

Today we look at $\mathfrak g$ and $\mathfrak h$ and their relatives.

Suslin ccc iterations and matrix iterations of lectures 1 through 3 keep these cardinals small.

So such iterations cannot be used to separate them.

To separate two such cardinals, we need to build a small witness for one *along* the iteration while killing all small witnesses for the other.

The problem The construction

Relatives of \mathfrak{g} and \mathfrak{h}

Today we look at ${\mathfrak g}$ and ${\mathfrak h}$ and their relatives.

Suslin ccc iterations and matrix iterations of lectures 1 through 3 keep these cardinals small.

So such iterations cannot be used to separate them.

To separate two such cardinals, we need to build a small witness for one *along* the iteration while killing all small witnesses for the other.

For the latter task, use a diamond principle.

The problem The construction

\mathfrak{g} and \mathfrak{g}_f 1

Recall:

A family $\mathcal{D} \subseteq [\omega]^{\omega}$ is groupwise dense if

- \mathcal{D} is open $(\forall A \in \mathcal{D} \ \forall B \subseteq^* A \ (B \in \mathcal{D}))$
- given a partition $(I_n : n \in \omega)$ of ω into intervals, there is $B \in [\omega]^{\omega}$ such that $\bigcup_{n \in B} I_n \in \mathcal{D}$ (this implies, in particular, that \mathcal{D} is dense)

The problem The construction

\mathfrak{g} and \mathfrak{g}_f 1

Recall:

A family $\mathcal{D} \subseteq [\omega]^{\omega}$ is groupwise dense if

- \mathcal{D} is open ($\forall A \in \mathcal{D} \ \forall B \subseteq^* A \ (B \in \mathcal{D})$)
- given a partition $(I_n : n \in \omega)$ of ω into intervals, there is $B \in [\omega]^{\omega}$ such that $\bigcup_{n \in B} I_n \in \mathcal{D}$ (this implies, in particular, that \mathcal{D} is dense)

 $\ensuremath{\mathcal{D}}$ is a groupwise dense ideal if it is groupwise dense and closed under finite unions.

<u>Remark</u>: \mathcal{D} groupwise dense ideal \iff dual filter \mathcal{D}^* non-meager.

The problem The construction

\mathfrak{g} and \mathfrak{g}_f 2

$$\begin{split} \mathfrak{g} &:= \min\{|\mathfrak{D}| : \text{all } \mathcal{D} \in \mathfrak{D} \text{ groupwise dense and } \bigcap \mathfrak{D} = \emptyset\} \\ & \text{the groupwise density number.} \\ \mathfrak{g}_f &:= \min\{|\mathfrak{D}| : \text{all } \mathcal{D} \in \mathfrak{D} \text{ groupwise dense ideals and } \bigcap \mathfrak{D} = \emptyset\} \\ & \text{the groupwise density number for ideals.} \end{split}$$

The problem The construction

\mathfrak{g} and \mathfrak{g}_f 2

$$\begin{split} \mathfrak{g} &:= \min\{|\mathfrak{D}| : \text{all } \mathcal{D} \in \mathfrak{D} \text{ groupwise dense and } \bigcap \mathfrak{D} = \emptyset\} \\ & \text{the groupwise density number.} \\ \mathfrak{g}_f &:= \min\{|\mathfrak{D}| : \text{all } \mathcal{D} \in \mathfrak{D} \text{ groupwise dense ideals and } \bigcap \mathfrak{D} = \emptyset\} \\ & \text{the groupwise density number for ideals.} \\ \text{Clearly } \mathfrak{g} \leq \mathfrak{g}_f. \text{ We show:} \\ \end{split}$$

 $CON(\mathfrak{g} < \mathfrak{g}_f).$

Jörg Brendle Aspects of iterated forcing

< ロ > < 同 > < 回 > < 回 > < 回 > <

The problem The construction

Context: filter dichotomy and semifilter trichotomy

filter dichotomy FD: \forall filters \mathcal{F} on ω , $\exists f : \omega \to \omega$ finite-to-one such that either $f(\mathcal{F})$ is the cofinite filter or $f(\mathcal{F})$ is an ultrafilter.

イロト イポト イヨト イヨト

MQ (P

The problem The construction

Context: filter dichotomy and semifilter trichotomy

filter dichotomy FD: \forall filters \mathcal{F} on ω , $\exists f : \omega \to \omega$ finite-to-one such that either $f(\mathcal{F})$ is the cofinite filter or $f(\mathcal{F})$ is an ultrafilter. semi-filter trichotomy: \forall families $\mathcal{X} \subseteq [\omega]^{\omega}$ closed under almost supersets, $\exists f : \omega \to \omega$ finite-to-one such that either $f(\mathcal{X})$ is the cofinite filter or $f(\mathcal{X}) = [\omega]^{\omega}$ or $f(\mathcal{X})$ is an ultrafilter.

The problem The construction

Context: filter dichotomy and semifilter trichotomy

filter dichotomy FD: \forall filters \mathcal{F} on ω , $\exists f : \omega \to \omega$ finite-to-one such that either $f(\mathcal{F})$ is the cofinite filter or $f(\mathcal{F})$ is an ultrafilter. semi-filter trichotomy: \forall families $\mathcal{X} \subseteq [\omega]^{\omega}$ closed under almost supersets, $\exists f : \omega \to \omega$ finite-to-one such that either $f(\mathcal{X})$ is the cofinite filter or $f(\mathcal{X}) = [\omega]^{\omega}$ or $f(\mathcal{X})$ is an ultrafilter.

Theorem (Blass-Laflamme)

- (i) filter dichotomy FD is equivalent to $\mathfrak{u} < \mathfrak{g}_f$
- (ii) semi-filter trichotomy is equivalent to $\mathfrak{u} < \mathfrak{g}$

The problem The construction

Context: filter dichotomy and semifilter trichotomy

filter dichotomy FD: \forall filters \mathcal{F} on ω , $\exists f : \omega \to \omega$ finite-to-one such that either $f(\mathcal{F})$ is the cofinite filter or $f(\mathcal{F})$ is an ultrafilter. semi-filter trichotomy: \forall families $\mathcal{X} \subseteq [\omega]^{\omega}$ closed under almost supersets, $\exists f : \omega \to \omega$ finite-to-one such that either $f(\mathcal{X})$ is the cofinite filter or $f(\mathcal{X}) = [\omega]^{\omega}$ or $f(\mathcal{X})$ is an ultrafilter.

Theorem (Blass-Laflamme)

(i) filter dichotomy FD is equivalent to $\mathfrak{u} < \mathfrak{g}_f$

(ii) semi-filter trichotomy is equivalent to $\mathfrak{u} < \mathfrak{g}$

Question (Blass)

Are filter dichotomy and semi-filter trichotomy equivalent?

In our model for $\mathfrak{g} < \mathfrak{g}_f$: $\mathfrak{u} = \mathfrak{g}_f$.

・ロト ・回ト ・ヨト ・ヨト

The problem The construction

Outline of proof

Theorem (B.)

 $CON(\mathfrak{g} < \mathfrak{g}_f).$

Outline of proof:

Jörg Brendle Aspects of iterated forcing

<ロ> <同> <同> < 同> < 同>

1

The problem The construction

Outline of proof

Theorem (B.)

 $CON(\mathfrak{g} < \mathfrak{g}_f).$

Outline of proof: Assume *CH* and build fsi of ccc partial orders of length ω_2 . Along the iteration also build a witness \mathfrak{D} for $\mathfrak{g} = \aleph_1$. Use a diamond principle to kill (initial segments of) potential witnesses \mathfrak{E} for $\mathfrak{g}_f = \aleph_1$ in limit stages of cofinality ω_1 .

The problem The construction

Outline of proof

Theorem (B.)

 $CON(\mathfrak{g} < \mathfrak{g}_f).$

Outline of proof:

Assume *CH* and build fsi of ccc partial orders of length ω_2 . Along the iteration also build a witness \mathfrak{D} for $\mathfrak{g} = \aleph_1$. Use a diamond principle to kill (initial segments of) potential witnesses \mathfrak{E} for $\mathfrak{g}_f = \aleph_1$ in limit stages of cofinality ω_1 . The main point is that in such a limit stage a certain filter can be built such that Laver forcing with this filter kills \mathfrak{E} while at the same time not destroying (the initial part of) \mathfrak{D} (see Crucial Lemma below).

The problem The construction

- Lecture 1: Definability
 - Suslin ccc forcing
 - Iteration of definable forcing
 - Applications
- 2 Lecture 2: Matrices
 - Extending ultrafilters
 - Matrix iterations
 - Applications
- 3 Lecture 3: Ultrapowers
 - Ultrapowers of p.o.'s
 - Ultrapowers and iterations
 - Applications
- 4 Lecture 4: Witnesses
 - The problem
 - The construction

Image: Image:

→ Ξ → < Ξ</p>

The problem The construction

The forcing

 $\Diamond_{S_1^2}$: there is a sequence $(S_\alpha \subseteq \alpha : \alpha < \omega_2 \text{ and } cf(\alpha) = \omega_1)$ such that $\forall S \subseteq \omega_2 \exists$ stationarily many α with $S \cap \alpha = S_\alpha$.

・ロト ・ 同ト ・ ヨト ・

ヨート

The problem The construction

The forcing

 $\Diamond_{S_1^2}$: there is a sequence $(S_\alpha \subseteq \alpha : \alpha < \omega_2 \text{ and } cf(\alpha) = \omega_1)$ such that $\forall S \subseteq \omega_2 \exists$ stationarily many α with $S \cap \alpha = S_\alpha$.

Build fsi
$$(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2)$$
 of ccc forcing such that
(i) if $cf(\alpha) = \omega_1$, then $\dot{\mathbb{Q}}_{\alpha} = \mathbb{L}_{\dot{\mathcal{F}}_{\alpha}}$
(see below for details)

・ロト ・ 同ト ・ ヨト ・

ヨート

The problem The construction

The forcing

 $\Diamond_{S_1^2}$: there is a sequence $(S_\alpha \subseteq \alpha : \alpha < \omega_2 \text{ and } cf(\alpha) = \omega_1)$ such that $\forall S \subseteq \omega_2 \exists$ stationarily many α with $S \cap \alpha = S_\alpha$.

Build fsi
$$(\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2)$$
 of ccc forcing such that
(i) if $cf(\alpha) = \omega_1$, then $\dot{\mathbb{Q}}_{\alpha} = \mathbb{L}_{\dot{\mathcal{F}}_{\alpha}}$
(see below for details)
(ii) if $cf(\alpha) \leq \omega$, then $\dot{\mathbb{Q}}_{\alpha} = \dot{\mathbb{D}}$

The problem The construction

Building witnesses 1

Construct groupwise dense families \mathcal{D}_{β} , $\beta < \omega_1$, along the iteration to witness $\mathfrak{g} = \aleph_1$. Require $\mathcal{D}_{\beta'} \subseteq \mathcal{D}_{\beta}$ for $\beta' \geq \beta$.

イロト イポト イヨト イヨト

MQ (P

The problem The construction

Building witnesses 1

Construct groupwise dense families \mathcal{D}_{β} , $\beta < \omega_1$, along the iteration to witness $\mathfrak{g} = \aleph_1$. Require $\mathcal{D}_{\beta'} \subseteq \mathcal{D}_{\beta}$ for $\beta' \geq \beta$.

More explicitly: have $\mathcal{D}_{\overline{\beta}}^{\leq \alpha} = \mathcal{D}_{\beta} \cap V_{\alpha}$ such that

$$\bullet \ \mathcal{D}_{\beta'}^{\leq \alpha} \subseteq \mathcal{D}_{\beta}^{\leq \alpha} \ \text{for} \ \beta' \geq \beta$$

The problem The construction

Building witnesses 1

Construct groupwise dense families \mathcal{D}_{β} , $\beta < \omega_1$, along the iteration to witness $\mathfrak{g} = \aleph_1$. Require $\mathcal{D}_{\beta'} \subseteq \mathcal{D}_{\beta}$ for $\beta' \geq \beta$.

More explicitly: have $\mathcal{D}_{eta}^{\leq lpha} = \mathcal{D}_{eta} \cap V_{lpha}$ such that

• $\mathcal{D}_{\beta'}^{\leq \alpha} \subseteq \mathcal{D}_{\beta}^{\leq \alpha}$ for $\beta' \geq \beta$

• $\mathcal{D}_{\beta}^{\leq \alpha}$ open (but not necessarily groupwise dense)

The problem The construction

Building witnesses 1

Construct groupwise dense families \mathcal{D}_{β} , $\beta < \omega_1$, along the iteration to witness $\mathfrak{g} = \aleph_1$. Require $\mathcal{D}_{\beta'} \subseteq \mathcal{D}_{\beta}$ for $\beta' \geq \beta$.

More explicitly: have $\mathcal{D}_{\overline{\beta}}^{\leq lpha} = \mathcal{D}_{eta} \cap V_{lpha}$ such that

•
$$\mathcal{D}_{\beta'}^{\leq \alpha} \subseteq \mathcal{D}_{\beta}^{\leq \alpha}$$
 for $\beta' \geq \beta$

- $\mathcal{D}_{\beta}^{\leq \alpha}$ open
- $\bullet\,$ additional conditions, guaranteeing \mathcal{D}_β will be groupwise dense

・ロト ・ 同ト ・ ヨト ・ ヨト

The problem The construction

Building witnesses 2

To show that $\bigcap_{\beta < \omega_1} \mathcal{D}_{\beta} = \emptyset$, need

$$\forall A \in [\omega]^{\omega} \cap V_{\alpha} \quad \exists \beta < \omega_1 \quad A \notin \mathcal{D}_{\beta} \qquad (+_{\alpha})$$

Jörg Brendle Aspects of iterated forcing

<ロ> <同> <同> < 同> < 同>

5900

1

The problem The construction

Building witnesses 2

To show that
$$\bigcap_{\beta < \omega_1} \mathcal{D}_\beta = \emptyset$$
, need

$$\forall A \in [\omega]^{\omega} \cap V_{\alpha} \quad \exists \beta < \omega_1 \quad A \notin \mathcal{D}_{\beta} \qquad (+_{\alpha})$$

Argue that

$$\forall A \in [\omega]^{\omega} \cap V_{\alpha} \quad \exists \beta < \omega_1 \quad A \notin \mathcal{D}_{\beta}^{\leq \alpha} \qquad (*_{\alpha})$$

and

$$\forall A \in [\omega]^{\omega} \cap V_{\alpha} \quad \forall \beta < \omega_1 \quad (A \notin \mathcal{D}_{\beta}^{\leq \alpha} \text{ implies } A \notin \mathcal{D}_{\beta}^{\leq \alpha+1}) \quad (\dagger_{\alpha})$$

<ロ> <同> <同> < 同> < 同>

3

990

The problem The construction

Building witnesses 2

To show that
$$\bigcap_{\beta < \omega_1} \mathcal{D}_{\beta} = \emptyset$$
, need

$$\forall A \in [\omega]^{\omega} \cap V_{\alpha} \quad \exists \beta < \omega_1 \quad A \notin \mathcal{D}_{\beta} \qquad (+_{\alpha})$$

Argue that

$$\forall A \in [\omega]^{\omega} \cap V_{\alpha} \quad \exists \beta < \omega_1 \quad A \notin \mathcal{D}_{\beta}^{\leq \alpha} \qquad (*_{\alpha})$$

and

$$\forall A \in [\omega]^{\omega} \cap V_{\alpha} \quad \forall \beta < \omega_1 \quad (A \notin \mathcal{D}_{\beta}^{\leq \alpha} \text{ implies } A \notin \mathcal{D}_{\beta}^{\leq \alpha+1}) \quad (\dagger_{\alpha})$$

Straightforward: $(+_{\alpha})$ follows from $(*_{\alpha})$ and (\dagger_{α}) . Easy: (\dagger_{α}) holds. Main point: proof of $(*_{\alpha})$ by induction on α . Standard: $(*_{\alpha})$ for α limit and $\alpha = \alpha' + 1$, $cf(\alpha') \leq \omega$.

The problem The construction

Building and destroying witnesses 1

<u>Main issue</u>: proof of $(*_{\alpha+1})$ in case $cf(\alpha) = \omega_1$.

イロト イポト イヨト イヨト

DQ P

The problem The construction

Building and destroying witnesses 1

<u>Main issue</u>: proof of $(*_{\alpha+1})$ in case $cf(\alpha) = \omega_1$. Also construct filter \mathcal{F}_{α} such that forcing with $\mathbb{Q}_{\alpha} = \mathbb{L}_{\mathcal{F}_{\alpha}}$ over V_{α} destroys potential witness for $\mathfrak{g}_f = \aleph_1$.

The problem The construction

Building and destroying witnesses 1

<u>Main issue:</u> proof of $(*_{\alpha+1})$ in case $cf(\alpha) = \omega_1$. Also construct filter \mathcal{F}_{α} such that forcing with $\mathbb{Q}_{\alpha} = \mathbb{L}_{\mathcal{F}_{\alpha}}$ over V_{α} destroys potential witness for $\mathfrak{g}_f = \aleph_1$. We want:

(i) if $\mathcal{E}_{\beta}, \beta < \omega_1$, is the initial segment of a potential witness for $\mathfrak{g}_f = \aleph_1$, handed down by $\diamondsuit_{S_1^2}$, then \mathcal{F}_{α} diagonalizes the \mathcal{E}_{β} (that is, for all $\beta < \omega_1$, $\mathcal{F}_{\alpha} \cap \mathcal{E}_{\beta} \neq \emptyset$)

< ロ > < 同 > < 回 > < 回 > < 回 > <

The problem The construction

Building and destroying witnesses 1

<u>Main issue:</u> proof of $(*_{\alpha+1})$ in case $cf(\alpha) = \omega_1$. Also construct filter \mathcal{F}_{α} such that forcing with $\mathbb{Q}_{\alpha} = \mathbb{L}_{\mathcal{F}_{\alpha}}$ over V_{α} destroys potential witness for $\mathfrak{g}_f = \aleph_1$. We want:

- (i) if $\mathcal{E}_{\beta}, \beta < \omega_{1}$, is the initial segment of a potential witness for $\mathfrak{g}_{f} = \aleph_{1}$, handed down by $\diamondsuit_{S_{1}^{2}}$, then \mathcal{F}_{α} diagonalizes the \mathcal{E}_{β} (that is, for all $\beta < \omega_{1}$, $\mathcal{F}_{\alpha} \cap \mathcal{E}_{\beta} \neq \emptyset$)
- (ii) for all partial functions $f: \omega \to \omega$ from V_{α} with $\operatorname{dom}(f) \in \mathcal{F}_{\alpha}^+$ and $f^{-1}(n) \notin \mathcal{F}_{\alpha}^+$ for all $n \in \omega$, there is $\beta < \omega_1$ such that for all $F \in \mathcal{F}_{\alpha}$, $f(F \cap \operatorname{dom}(f)) \notin \mathcal{D}_{\beta}^{\leq \alpha}$

The problem The construction

Building and destroying witnesses 1

<u>Main issue</u>: proof of $(*_{\alpha+1})$ in case $cf(\alpha) = \omega_1$. Also construct filter \mathcal{F}_{α} such that forcing with $\mathbb{Q}_{\alpha} = \mathbb{L}_{\mathcal{F}_{\alpha}}$ over V_{α} destroys potential witness for $\mathfrak{g}_f = \aleph_1$. We want:

- (i) if $\mathcal{E}_{\beta}, \beta < \omega_{1}$, is the initial segment of a potential witness for $\mathfrak{g}_{f} = \aleph_{1}$, handed down by $\diamondsuit_{S_{1}^{2}}$, then \mathcal{F}_{α} diagonalizes the \mathcal{E}_{β} (that is, for all $\beta < \omega_{1}, \mathcal{F}_{\alpha} \cap \mathcal{E}_{\beta} \neq \emptyset$)
- (ii) for all partial functions $f: \omega \to \omega$ from V_{α} with $\operatorname{dom}(f) \in \mathcal{F}_{\alpha}^+$ and $f^{-1}(n) \notin \mathcal{F}_{\alpha}^+$ for all $n \in \omega$, there is $\beta < \omega_1$ such that for all $F \in \mathcal{F}_{\alpha}$, $f(F \cap \operatorname{dom}(f)) \notin \mathcal{D}_{\beta}^{\leq \alpha}$
- (i): for destroying a witness of $\mathfrak{g}_f = \aleph_1$.
- (ii): for proving $(*_{\alpha+1})$ (and thus building a witness for $\mathfrak{g} = \aleph_1$).

イロト 人間ト イヨト イヨト

The problem The construction

Building and destroying witnesses 1

<u>Main issue:</u> proof of $(*_{\alpha+1})$ in case $cf(\alpha) = \omega_1$. Also construct filter \mathcal{F}_{α} such that forcing with $\mathbb{Q}_{\alpha} = \mathbb{L}_{\mathcal{F}_{\alpha}}$ over V_{α} destroys potential witness for $\mathfrak{g}_f = \aleph_1$. We want:

- (i) if $\mathcal{E}_{\beta}, \beta < \omega_1$, is the initial segment of a potential witness for $\mathfrak{g}_f = \aleph_1$, handed down by $\diamondsuit_{S_1^2}$, then \mathcal{F}_{α} diagonalizes the \mathcal{E}_{β} (that is, for all $\beta < \omega_1$, $\mathcal{F}_{\alpha} \cap \mathcal{E}_{\beta} \neq \emptyset$)
- (ii) for all partial functions $f: \omega \to \omega$ from V_{α} with $\operatorname{dom}(f) \in \mathcal{F}_{\alpha}^+$ and $f^{-1}(n) \notin \mathcal{F}_{\alpha}^+$ for all $n \in \omega$, there is $\beta < \omega_1$ such that for all $F \in \mathcal{F}_{\alpha}$, $f(F \cap \operatorname{dom}(f)) \notin \mathcal{D}_{\beta}^{\leq \alpha}$
- (i): for destroying a witness of $\mathfrak{g}_f = \aleph_1$.
- (ii): for proving $(*_{\alpha+1})$ (and thus building a witness for $\mathfrak{g} = \aleph_1$).

Crucial Lemma

Assume $(*_{\alpha})$. In V_{α} , there is \mathcal{F}_{α} satisfying (i) and (ii) above.

The problem The construction

Building and destroying witnesses 2

Crucial Corollary

Assume $cf(\alpha) = \omega_1$ and $(*_{\alpha})$ holds. Then $(*_{\alpha+1})$ is true as well.

イロト イポト イヨト イヨト

MQ (P

The problem The construction

Building and destroying witnesses 2

Crucial Corollary

Assume $cf(\alpha) = \omega_1$ and $(*_{\alpha})$ holds. Then $(*_{\alpha+1})$ is true as well.

<u>Proof:</u> Rank analysis of $\mathbb{L}_{\mathcal{F}_{\alpha}}$ -names:

< ロ > < 同 > < 回 > < 回 > < 回 > <

The problem The construction

Building and destroying witnesses 2

Crucial Corollary

Assume $cf(\alpha) = \omega_1$ and $(*_{\alpha})$ holds. Then $(*_{\alpha+1})$ is true as well.

Proof:

Rank analysis of $\mathbb{L}_{\mathcal{F}_{\alpha}}$ -names:

 φ : statement of the forcing language.

 σ forces φ : $\exists p \in \mathbb{L}_{\mathcal{F}}$ with stem $(p) = \sigma$ and $p \Vdash \varphi$.

The problem The construction

Building and destroying witnesses 2

Crucial Corollary

Assume $cf(\alpha) = \omega_1$ and $(*_{\alpha})$ holds. Then $(*_{\alpha+1})$ is true as well.

Proof:

Rank analysis of $\mathbb{L}_{\mathcal{F}_{\alpha}}$ -names: φ : statement of the forcing language. σ forces φ : $\exists p \in \mathbb{L}_{\mathcal{F}}$ with stem $(p) = \sigma$ and $p \Vdash \varphi$.

$$\rho_{\varphi}(\sigma) = 0 \text{ if } \sigma \text{ forces } \varphi.$$

 $\alpha > 0: \ \rho_{\varphi}(\sigma) \leq \alpha \text{ if } \{n : \rho_{\varphi}(\sigma^{\frown}n) < \alpha\} \in \mathcal{F}^+$

The problem The construction

Building and destroying witnesses 2

Crucial Corollary

Assume $cf(\alpha) = \omega_1$ and $(*_{\alpha})$ holds. Then $(*_{\alpha+1})$ is true as well.

Proof:

Rank analysis of $\mathbb{L}_{\mathcal{F}_{\alpha}}$ -names: φ : statement of the forcing language. σ forces φ : $\exists p \in \mathbb{L}_{\mathcal{F}}$ with stem $(p) = \sigma$ and $p \Vdash \varphi$.

$$\begin{array}{l} \rho_{\varphi}(\sigma) = 0 \text{ if } \sigma \text{ forces } \varphi.\\ \alpha > 0: \ \rho_{\varphi}(\sigma) \leq \alpha \text{ if } \{n : \rho_{\varphi}(\sigma^{\frown}n) < \alpha\} \in \mathcal{F}^+. \end{array}$$

 σ favors φ if $\rho_{\varphi}(\sigma)$ is defined (i.e., it is less than ω_1). σ forces at most one of φ and $\neg \varphi$ and favors at least one of them. In fact, σ favors φ iff σ does not force $\neg \varphi$.

The problem The construction

Building and destroying witnesses 3

Rank analysis of $\mathbb{L}_{\mathcal{F}_{\alpha}}$ -names, continued:

Let \dot{A} be an $\mathbb{L}_{\mathcal{F}}$ -name for an infinite subset of ω .

イロト イポト イヨト イヨト

MQ (P

The problem The construction

Building and destroying witnesses 3

Rank analysis of $\mathbb{L}_{\mathcal{F}_{\alpha}}$ -names, continued:

Let A be an $\mathbb{L}_{\mathcal{F}}$ -name for an infinite subset of ω .

 $rk(\sigma) = 0$ if

- either there is $B \in [\omega]^{\omega}$ such that, for all $n \in B$, σ favors $n \in A$
- or there is a partial function $f : \omega \to \omega$ such that $\operatorname{dom}(f) \in \mathcal{F}^+$, $f^{-1}(n) \notin \mathcal{F}^+$ for all $n \in \omega$, and $\sigma^{\frown} n$ favors $f(n) \in A$ for all $n \in \operatorname{dom}(f)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

The problem The construction

Building and destroying witnesses 3

Rank analysis of $\mathbb{L}_{\mathcal{F}_{\alpha}}$ -names, continued:

Let A be an $\mathbb{L}_{\mathcal{F}}$ -name for an infinite subset of ω .

 $rk(\sigma) = 0$ if

- either there is $B \in [\omega]^{\omega}$ such that, for all $n \in B$, σ favors $n \in A$
- or there is a partial function f : ω → ω such that dom(f) ∈ F⁺, f⁻¹(n) ∉ F⁺ for all n ∈ ω, and σ[^]n favors f(n) ∈ A for all n ∈ dom(f)

 $\alpha > 0$: $\mathsf{rk}(\sigma) \le \alpha$ if $\{\mathsf{n} : \mathsf{rk}(\sigma^{\frown}\mathsf{n}) < \alpha\} \in \mathcal{F}^+$.

The problem The construction

Building and destroying witnesses 3

Rank analysis of $\mathbb{L}_{\mathcal{F}_{\alpha}}$ -names, continued:

Let A be an $\mathbb{L}_{\mathcal{F}}$ -name for an infinite subset of ω .

 $rk(\sigma) = 0$ if

- either there is $B \in [\omega]^{\omega}$ such that, for all $n \in B$, σ favors $n \in A$
- or there is a partial function f : ω → ω such that dom(f) ∈ F⁺, f⁻¹(n) ∉ F⁺ for all n ∈ ω, and σ[^]n favors f(n) ∈ A for all n ∈ dom(f)
 α > 0: rk(σ) ≤ α if {n : rk(σ[^]n) < α} ∈ F⁺.

<u>Claim</u>: $rk(\sigma)$ is defined for all σ . \Box

The problem The construction

Building and destroying witnesses 4

For σ with $rk(\sigma) = 0$ fix either a witness B_{σ} or a witness f_{σ} as in the definition of rk.

イロト イポト イヨト イヨト

MQ (P

The problem The construction

Building and destroying witnesses 4

For σ with $rk(\sigma) = 0$ fix either a witness B_{σ} or a witness f_{σ} as in the definition of rk. For σ of rank 0 such that B_{σ} is defined, use $(*_{\alpha})$ to find γ_{σ} such that $B_{\sigma} \notin \mathcal{D}_{\gamma_{\sigma}}^{\leq \alpha}$.

The problem The construction

Building and destroying witnesses 4

For σ with $rk(\sigma) = 0$ fix either a witness B_{σ} or a witness f_{σ} as in the definition of rk.

For σ of rank 0 such that B_{σ} is defined, use $(*_{\alpha})$ to find γ_{σ} such that $B_{\sigma} \notin \mathcal{D}_{\gamma_{\sigma}}^{\leq \alpha}$. For σ of rank 0 such that f_{σ} is defined, use property (ii), which holds for \mathcal{F}_{α} by Crucial Lemma, to find γ_{σ} such that for all

 $F \in \mathcal{F}_{\alpha}, f_{\sigma}(F \cap \operatorname{dom}(f_{\sigma})) \notin \mathcal{D}_{\gamma_{\sigma}}^{\leq \alpha}.$

The problem The construction

Building and destroying witnesses 4

For σ with $rk(\sigma) = 0$ fix either a witness B_{σ} or a witness f_{σ} as in the definition of rk.

For σ of rank 0 such that B_{σ} is defined, use $(*_{\alpha})$ to find γ_{σ} such that $B_{\sigma} \notin \mathcal{D}_{\gamma_{\sigma}}^{\leq \alpha}$. For σ of rank 0 such that f_{σ} is defined, use property (ii), which holds for \mathcal{F}_{α} by Crucial Lemma, to find γ_{σ} such that for all $F \in \mathcal{F}_{\alpha}$, $f_{\sigma}(F \cap \operatorname{dom}(f_{\sigma})) \notin \mathcal{D}_{\gamma_{\sigma}}^{\leq \alpha}$.

Let $\beta \geq \sup_{\sigma} \gamma_{\sigma}$.

・ロン ・部 と ・ ヨ と ・ ヨ と

The problem The construction

Building and destroying witnesses 5

$\underline{\mathsf{Claim:}} \Vdash \dot{A} \notin \mathcal{D}_{\beta}^{\leq \alpha+1}.$

Jörg Brendle Aspects of iterated forcing

イロト イポト イヨト イヨト

DQ P

The problem The construction

Building and destroying witnesses 5

 $\underline{\mathsf{Claim:}}\Vdash \dot{A}\notin \mathcal{D}_{\beta}^{\leq \alpha+1}.$

Assume: $\exists B \in \mathcal{D}_{\beta}^{\leq \alpha}$ and $p \in \mathbb{L}_{\mathcal{F}_{\alpha}}$ such that $p \Vdash \dot{A} \subseteq B$. Wlog: $\sigma := \operatorname{stem}(p)$ has rank 0.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The problem The construction

Building and destroying witnesses 5

 $\underline{\mathsf{Claim:}}\Vdash \dot{A}\notin \mathcal{D}_{\beta}^{\leq \alpha+1}.$

Assume: $\exists B \in \mathcal{D}_{\beta}^{\leq \alpha}$ and $p \in \mathbb{L}_{\mathcal{F}_{\alpha}}$ such that $p \Vdash \dot{A} \subseteq B$. Wlog: $\sigma := \operatorname{stem}(p)$ has rank 0.

Assume first B_{σ} is defined. By assumption: $B_{\sigma} \setminus B$ is infinite. Choose $k \in B_{\sigma} \setminus B$. Since σ favors $k \in A$: $\exists q \leq p$ such that $q \Vdash k \in A$, a contradiction.

The problem The construction

Building and destroying witnesses 5

 $\underline{\mathsf{Claim:}}\Vdash \dot{A}\notin \mathcal{D}_{\beta}^{\leq \alpha+1}.$

Assume: $\exists B \in \mathcal{D}_{\beta}^{\leq \alpha}$ and $p \in \mathbb{L}_{\mathcal{F}_{\alpha}}$ such that $p \Vdash \dot{A} \subseteq B$. Wlog: $\sigma := \operatorname{stem}(p)$ has rank 0.

Assume first B_{σ} is defined. By assumption: $B_{\sigma} \setminus B$ is infinite. Choose $k \in B_{\sigma} \setminus B$. Since σ favors $k \in A$: $\exists q \leq p$ such that $q \Vdash k \in A$, a contradiction.

Assume next f_{σ} is defined. Let $F := \operatorname{succ}_{p}(\sigma)$. By (ii): $f_{\sigma}(F \cap \operatorname{dom}(f_{\sigma})) \notin \mathcal{D}_{\beta}^{\leq \alpha}$. Hence: choose $n \in F \cap \operatorname{dom}(f_{\sigma})$ such that $k := f_{\sigma}(n) \notin B$. Since $\sigma^{\frown} n$ favors $k \in A$: $\exists q \leq p$ with $\operatorname{stem}(q) \supseteq \sigma^{\frown} n$ such that $q \Vdash k \in A$, again a contradiction.

The problem The construction

Building and destroying witnesses 5

 $\underline{\mathsf{Claim:}}\Vdash \dot{A}\notin \mathcal{D}_{\beta}^{\leq \alpha+1}.$

Assume: $\exists B \in \mathcal{D}_{\beta}^{\leq \alpha}$ and $p \in \mathbb{L}_{\mathcal{F}_{\alpha}}$ such that $p \Vdash \dot{A} \subseteq B$. Wlog: $\sigma := \operatorname{stem}(p)$ has rank 0.

Assume first B_{σ} is defined. By assumption: $B_{\sigma} \setminus B$ is infinite. Choose $k \in B_{\sigma} \setminus B$. Since σ favors $k \in A$: $\exists q \leq p$ such that $q \Vdash k \in A$, a contradiction.

Assume next f_{σ} is defined. Let $F := \operatorname{succ}_{p}(\sigma)$. By (ii): $f_{\sigma}(F \cap \operatorname{dom}(f_{\sigma})) \notin \mathcal{D}_{\beta}^{\leq \alpha}$. Hence: choose $n \in F \cap \operatorname{dom}(f_{\sigma})$ such that $k := f_{\sigma}(n) \notin B$. Since $\sigma \cap n$ favors $k \in A$: $\exists q \leq p$ with $\operatorname{stem}(q) \supseteq \sigma \cap n$ such that $q \Vdash k \in A$, again a contradiction.

Proves Crucial Corollary.

The problem The construction

End of proof

Corollary

 $\mathfrak{g} = leph_1$ holds in V_{ω_2}

<ロ> <同> <同> < 同> < 同>

3

5900

The problem The construction

End of proof

Corollary

 $\mathfrak{g} = leph_1$ holds in V_{ω_2}

<u>Proof</u>: Know: $(*_{\alpha})$ holds for all α . Implies: $\mathfrak{g} = \aleph_1$. \Box

イロト イポト イヨト イヨト

DQ P

The problem The construction

End of proof

Corollary

 $\mathfrak{g} = leph_1$ holds in V_{ω_2}

Corollary

 $\mathfrak{g}_f = leph_2$ holds in V_{ω_2}

<u>Proof:</u> $\mathfrak{E} = \{\mathcal{E}_{\beta} : \beta < \omega_1\}$ family of groupwise dense ideals. By $\diamondsuit_{S_1^2}$ and (i) of Crucial Lemma: $\exists \alpha$ such that $(\mathcal{E}_{\beta} \cap V_{\alpha}) \cap \mathcal{F}_{\alpha} \neq \emptyset$ for all $\beta < \omega_1$.

The problem The construction

End of proof

Corollary

 $\mathfrak{g} = leph_1$ holds in V_{ω_2}

Corollary

 $\mathfrak{g}_f = leph_2$ holds in V_{ω_2}

<u>Proof:</u> $\mathfrak{E} = \{\mathcal{E}_{\beta} : \beta < \omega_1\}$ family of groupwise dense ideals. By $\diamondsuit_{S_1^2}$ and (i) of Crucial Lemma: $\exists \alpha$ such that $(\mathcal{E}_{\beta} \cap V_{\alpha}) \cap \mathcal{F}_{\alpha} \neq \emptyset$ for all $\beta < \omega_1$.

 $\mathbb{L}_{\mathcal{F}_{\alpha}}$ adds pseudointersection through filter \mathcal{F}_{α} , i.e., a set $X \in [\omega]^{\omega}$ such that for all $\beta < \omega_1$ there is $B_{\beta} \in \mathcal{E}_{\beta} \cap V_{\alpha}$ with $X \subseteq^* B_{\beta}$. \mathcal{E}_{β} open: $X \in \bigcap_{\beta} \mathcal{E}_{\beta}$. Thus \mathfrak{E} cannot witness $\mathfrak{g}_f = \aleph_1$. \Box